
HybridSA: GPU Acceleration of Multi-pattern Regex
Matching using Bit Parallelism

ALEXIS LE GLAUNEC, Rice University, USA
LINGKUN KONG, Rice University, USA
KONSTANTINOS MAMOURAS, Rice University, USA

Multi-pattern matching is widely used in modern software for applications requiring high throughput such as
protein search, network traffic inspection, virus or spam detection. Graphics Processor Units (GPUs) excel
at executing massively parallel workloads. Regular expression (regex) matching is typically performed by
simulating the execution of deterministic finite automata (DFAs) or nondeterministic finite automata (NFAs).
The natural implementations of these automata simulation algorithms on GPUs are highly inefficient because
they give rise to irregular memory access patterns.

This paper presents HybridSA, a heterogeneous CPU-GPU parallel engine for multi-pattern matching.
HybridSA uses bit parallelism to efficiently simulate NFAs on GPUs, thus reducing the number of memory
accesses and increasing the throughput. Our bit-parallel algorithms extend the classical shift-and algorithm
for string matching to a large class of regular expressions and reduce automata simulation to a small number
of bitwise operations. We have developed a compiler to translate regular expressions into bit masks, perform
optimizations, and choose the best algorithms to run on the GPU. The majority of the regular expressions are
accelerated on the GPU, while the patterns that exhibit random memory accesses are executed on the CPU in
parallel. We evaluate HybridSA against state-of-the-art CPU and GPU engines, as well as a hybrid combination
of the two. HybridSA achieves between 4 and 60 times higher throughput than the state-of-the-art CPU engine
and between 4 and 233 times better than the state-of-the-art GPU engine across a collection of real-world
benchmarks.

CCS Concepts: •Theory of computation→ Formal languages and automata theory;Regular languages;
• Software and its engineering→ Semantics.

Additional Key Words and Phrases: regular expressions, regex matching, CUDA, shift-and algorithm, bit
parallelism

ACM Reference Format:
Alexis Le Glaunec, Lingkun Kong, and Konstantinos Mamouras. 2024. HybridSA: GPU Acceleration of Multi-
pattern RegexMatching using Bit Parallelism. Proc. ACMProgram. Lang. 8, OOPSLA2, Article 331 (October 2024),
30 pages. https://doi.org/10.1145/3689771

1 Introduction
Regular expressions [Kleene 1956] and finite-state automata (e.g., DFAs and NFAs) describe patterns
over sequences and have found applications in numerous domains. They have been used for the
lexical analysis of programs [Johnson et al. 1968] during compilation, the search of words and
patterns in text editors [Thompson 1968], and bibliographic search [Aho and Corasick 1975].
Regular patterns are also used in network security [Yu et al. 2006] to search for intrusion signatures

Authors’ Contact Information: Alexis Le Glaunec, Rice University, Houston, USA, alexis.leglaunec@rice.edu; Lingkun Kong,
Rice University, Houston, USA, klk@rice.edu; Konstantinos Mamouras, Rice University, Houston, USA, mamouras@rice.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/10-ART331
https://doi.org/10.1145/3689771

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 331. Publication date: October 2024.

HTTPS://ORCID.ORG/0000-0002-5444-5924
HTTPS://ORCID.ORG/0000-0003-0672-2998
HTTPS://ORCID.ORG/0000-0003-1209-7738
https://doi.org/10.1145/3689771
https://orcid.org/0000-0002-5444-5924
https://orcid.org/0000-0003-0672-2998
https://orcid.org/0000-0003-1209-7738
https://doi.org/10.1145/3689771

331:2 Alexis Le Glaunec, Lingkun Kong, and Konstantinos Mamouras

in network traffic, in bioinformatics [Roy and Aluru 2016] for describing protein, RNA, or DNA
sequences, and in runtime verification [Bartocci et al. 2018] for specifying safety properties.

Due to the broad applicability of regular patterns, many software tools exist for solving the regular
pattern matching problem. These tools are called regex engines. Many software implementations
are meant to run on CPUs, including the widely-used PCRE [The PCRE2 Developers 2024], grep
[Grep 2022], RE2 [RE2 2023], and Hyperscan [Wang et al. 2019]. Given the widespread adoption of
dedicated general-purpose GPUs, it is notable that there are only a few efforts for implementing
regex matching on GPUs [Avalle et al. 2016; Cascarano et al. 2010; Liu et al. 2020; Yu and Becchi
2013; Zu et al. 2012]. One of the main obstacles in taking advantage of GPUs for regular pattern
matching is that the typical algorithms for automata simulation (DFA- or NFA-based) involve highly
irregular memory access patterns when reading the transition function/relation from memory.
These memory access patterns are not a good fit for GPUs, which require very specific and regular
memory accesses to operate efficiently.

In this work, we show that it is possible to leverage the massive parallelism of modern GPUs for
multi-pattern regex matching by partitioning the set of patterns into two subsets: (1) those that will
execute on the CPU and (2) those that will execute on the GPU. The main idea is that for regular
expressions of certain simpler forms, it is possible to implement extremely efficient NFA simulation
algorithms that are a great fit for GPUs. This partitioning enables much more effective use of the
available hardware, namely the CPU and the GPU. By not trying to use the GPU for patterns that
are inherently difficult for the GPU execution model, we can effectively balance the load between
the CPU and the GPU and achieve a substantial performance improvement.

Contributions. In this paper, we make the following main contributions:
(1) We show that it is possible to implement efficient variants of the classical shift-and algorithm

[Baeza-Yates and Gonnet 1992] for string searching on GPUs. The algorithms that we consider
can be used to parallelize and accelerate multi-pattern matching for a significant portion of
regular patterns that arise in practice. Our algorithms use bit parallelism to perform𝑚 NFA
transitions with a constant number of logical/arithmetic operations, where𝑚 is the width of
the GPU registers.

(2) We implement a compiler that takes as input a set of regular expressions, identifies the subset
that can efficiently execute on the GPU, and then chooses a set of specialized GPU kernels for
them to maximize the performance. The compiler performs pattern rewriting optimizations
and produces for each kernel a compact binary representation of the NFAs that it will execute.
We call this representation an NFA database. During execution, the NFA database is loaded into
the global memory of the GPU, and the massively parallel execution of the NFAs is initiated.

(3) We perform an experimental evaluation of our implementation for multi-pattern matching by
comparing it against the state-of-the-art regex engines Hyperscan [Wang et al. 2019] (CPU-
based) and HotStart [Liu et al. 2020] (GPU-based). Our results show that our hybrid CPU-GPU
approach is around 4 to 233 times faster than other tools.

The use of bit parallelism in NFA simulation (using arithmetic and bitwise operations) has been
explored in several prior works (see, e.g., [Baeza-Yates and Gonnet 1992], [Wu and Manber 1992],
[Navarro 2001], [Navarro and Raffinot 2002], and [Wang et al. 2019]). The main novelties in this
paper concern (i) the careful GPU implementation of bit parallelism to altogether avoid thread
divergence and uncoalesced memory accesses and (ii) the use of rewriting optimizations that enable
the use of faster GPU kernels.

Paper Outline. Section 2 provides an overview of the necessary definitions and an exposition of
NFA simulation using bit vectors for representing sets of states. In Section 3, we describe the GPU

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 331. Publication date: October 2024.

HybridSA: GPU Acceleration of Multi-pattern Regex Matching using Bit Parallelism 331:3

implementation (in the CUDA programming model) of several variants of the shift-and algorithm
for bit-parallel NFA execution. Section 4 describes the partitioning of the pattern set between the
GPU and the CPU, how the GPU kernels are chosen, and some optimizing transformations that
can speed up NFA execution on the GPU. In Section 5, we compare our tool (called HybridSA) with
Hyperscan [Wang et al. 2019] and HotStart [Liu et al. 2020]. Section 6 contains a discussion of
related work. We conclude in Section 7 with a brief summary of our main contributions.

2 Preliminaries
In this section, we give a brief overview of concepts that we will need in the later development:
regular expressions, homogeneous NFAs, and the Glushkov construction. We also give a description
of the algorithm for simulating the execution of homogeneous NFAs using bit vectors to represent
sets of active NFA states.

Let Σ be a finite alphabet. A regular expression (or regex) over Σ is given by the grammar

𝑟 ::= 𝜀 | [empty string]
𝜎 | [character class]
𝑟 · 𝑟 | [concatenation]
𝑟 |𝑟 | [nondeterministic choice]
𝑟 ∗ | [Kleene star]
𝑟 {𝑚,𝑛} [bounded repetition]

where 𝜎 ⊆ Σ is a predicate over the alphabet and 𝑚,𝑛 are natural numbers with 𝑚 ≤ 𝑛. The
expression 𝑟 {𝑚,𝑛} is called a bounded repetition and describes the repetition of 𝑟 from 𝑚 to 𝑛
times. We write 𝑟 {𝑛} for 𝑟 {𝑛, 𝑛}. The concatenation symbol is sometimes omitted, i.e., we write
𝑟1𝑟2 instead of 𝑟1 · 𝑟2. The interpretation of a regex 𝑟 is a language L(𝑟) ⊆ Σ∗, which is defined in
the standard way.
A regular expression can be transformed into an equivalent nondeterministic finite automaton

(NFA). We will use Glushkov’s construction [Glushkov 1961] to convert a regular expression into
an NFA. In contrast to Thompson’s construction [Thompson 1968], Glushkov’s construction results
in 𝜀-free automata that are also homogeneous, i.e., all incoming transitions of a state are labeled
with the same predicate over the alphabet.

Definition 1 (Homogeneous NFA). Let Σ be a finite alphabet. A homogeneous nondeterministic
finite automaton with input alphabet Σ is a tuple A = (𝑄, 𝐿,Δ, 𝐼 , 𝐹), where
− 𝑄 is a finite set of (control) states,
− 𝐿 : 𝑄 → P(Σ) is a labeling function that maps each state to a character class,
− Δ : 𝑄 → P(𝑄) is the transition relation,
− 𝐼 ⊆ 𝑄 is the set of initial states, and
− 𝐹 ⊆ 𝑄 is the set of final states,

where P is the powerset operation.

Given a set of regular expressions and an input string, the multi-pattern matching problem
involves simulating a set of regular expressions over the same input text and reporting the total
number of matches. Multi-pattern matching is an embarrassingly parallel problem as the NFAs
can be executed independently over many independent inputs. A standard approach to solve the
multi-pattern matching problem is to execute each NFA independently. This is shown in Algorithm
1, where a Boolean transition matrix is used to represent the transitions of the automaton.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 331. Publication date: October 2024.

331:4 Alexis Le Glaunec, Lingkun Kong, and Konstantinos Mamouras

Algorithm 1: Simulation of the execution of a homogeneous NFA
1 Kernel NfaSimulation(init, final, labels, delta, text) :

// delta is the Boolean transition matrix of the NFA

// i.e., delta[i][j] = 1 iff there is a transition from state i to state j

2 states← 0 0 . . . 0 0 // 𝑛-bit vector of active states, where 𝑛 is the # NFA states

3 nMatches← 0 // number of matches

4 for 𝑐 in text do // left-to-right pass over input text
5 next ← 𝑖𝑛𝑖𝑡 // init states are always active

6 next ← next OR (states · delta) // execute transition by matrix multiplication

7 states← next AND labels[𝑐] // keep active states with the right label

8 nMatches← nMatches + ((states AND final) ≠ 0 0 . . . 0 0)
9 return nMatches

Notation (Bit Vectors). We will use the notation 𝑥𝑛−1 𝑥𝑛−2 . . . 𝑥2 𝑥1 𝑥0 for an 𝑛-bit vector. The
𝑖-th position of the bit vector has the value 𝑥𝑖 . If we think of the bit vector as a binary representation
of a number (e.g., a GPU register), the leftmost bit is the most significant and the rightmost bit is
the least significant. The left shift operation≪ shifts each bit to the left and inserts 0 in the least
significant position. For example, 𝑥3 𝑥2 𝑥1 𝑥0 ≪ 1 = 𝑥2 𝑥1 𝑥0 0 and 𝑥3 𝑥2 𝑥1 𝑥0 ≪ 2 = 𝑥1 𝑥0 0 0 .

We sometimes use the term (bit) mask to refer to a bit vector. This is because they are commonly
used as OR masks (to set specific bits to 1) or as AND masks (to set specific bits to 0).

If 𝑣 is a 1 × 𝑛 matrix (i.e., a row vector) and 𝑀 is an 𝑛 × 𝑛 matrix, then their product 𝑣 · 𝑀 is
a 1 × 𝑛 matrix, given by (𝑣 ·𝑀) (𝑗) = ∑𝑛−1

𝑖=0 𝑣 (𝑖) ·𝑀 (𝑖, 𝑗) for every 𝑗 = 0, 1, . . . , 𝑛 − 1. We will use
this operation of vector-matrix multiplication for the product of a state bit vector with the Boolean
transition matrix of an NFA.
The arguments init, final, labels and delta of NfaSimulation in Algorithm 1 represent a homo-

geneous NFAA = (𝑄, 𝐿,Δ, 𝐼 , 𝐹) with 𝑛 = |𝑄 | states. Assume w.l.o.g. that𝑄 = {0, 1, . . . , 𝑛 − 1}. Both
init and final are 𝑛-bit vectors that represent the sets 𝐼 and 𝐹 respectively. E.g., for every 𝑞 ∈ 𝑄 , we
have that init (𝑞) = 1 iff 𝑞 ∈ 𝐼 . The argument labels is an array of 𝑛-bit vectors that represents 𝐿 as
follows: labels[𝑐] (𝑞) = 1 iff 𝑐 ∈ 𝐿(𝑞), for every 𝑐 ∈ Σ and 𝑞 ∈ 𝑄 . Finally, delta is an 𝑛 × 𝑛 matrix
that satisfies: delta(𝑞, 𝑞′) = 1 iff 𝑞′ ∈ Δ(𝑞), for all 𝑞, 𝑞′ ∈ 𝑄 .

Example 2. Fig. 1 presents the execution of Algorithm 1 for the regex 𝑟1 = [ab](c|b.*c) over the
input stream abc. Notice that we label the states (instead of the edges) with character classes, as the
automaton is homogeneous. The character masks for a , b and c are 01001 , 01011 , and 11100
respectively. For all other letters, the character mask is 01000 as state 𝑞3 is labeled with . , which
matches any character. The mask for the set of initial states {𝑞0} (resp., set of final states {𝑞2, 𝑞4})
is 00001 (resp., 10100). After reading the character a , we perform vector-matrix multiplication
(line 6) using the transition matrix delta, which gives

next = init OR (states · delta) = 00001 OR (00000 · delta) = 00001 .

Then, we compute states, the set of states activated that also match the current input letter with

states = next AND labels[a] = (00001 AND 01001) = 00001 .

This means that state 𝑞0 is active. We compute the intersection between states and final in

is_final = (states AND final) ≠ 00000 = (00001 AND 10100) ≠ 00000 = false.

Thus, we have no match. In the next round, we consume character b . Right after line 6, we have that
next = (00001 OR (00001 · delta)) = 00111 . This is because the successors of state 𝑞0 are states

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 331. Publication date: October 2024.

HybridSA: GPU Acceleration of Multi-pattern Regex Matching using Bit Parallelism 331:5

𝑞0 : [ab] 𝑞1 : b

𝑞2 : c 𝑞3 : .

𝑞4 : c

(a)

Input a b c

next 00001 00111 11111
labels 01001 01011 11100
states 00001 00011 11100

nMatches 0 0 1

(b)

Fig. 1. NFA execution for the pattern 𝑟1 = [ab](c|b.*c) over the input string abc .

𝑞1 and 𝑞2. Then, we have that states = (00111 AND 01011) = 00011 , corresponding to the set of
active states {𝑞0, 𝑞1} that both match letter 𝑏. Since is_final = ((00011 AND 10100) ≠ 00000) =
false, we still have nomatch. For the last character c , next = (00001 OR (00011 ·delta)) = 11111 ,
which means that all states are active in next. We compute states = (11111 AND 11100) = 11100
and obtain that is_final = ((11100 AND 10100) ≠ 00000) = true, corresponding to a match for
state 𝑞4 which is final. Thus, we report a match and increment nMatches.

For a regular expression 𝑟 over Σ, a string𝑤 ∈ Σ∗, and a position 𝑗 = 0, 1, . . . , |𝑤 |, we say that 𝑟
has a match at position 𝑗 in 𝑤 if the substring 𝑤 [𝑖 .. 𝑗] is in L(𝑟) for some 𝑖 = 0, . . . , 𝑗 . We define
the function ⟦𝑟⟧ : Σ∗ → N as follows: ⟦𝑟⟧(𝑤) is equal to the size (i.e., cardinality) of the set

{ 𝑗 ∈ N | there is 𝑖 s.t. 0 ≤ 𝑖 ≤ 𝑗 ≤ |𝑤 | and𝑤 [𝑖 .. 𝑗] ∈ L(𝑟)}.
In other words, ⟦𝑟⟧(𝑤) is the number of positions 𝑗 for which there is a match for 𝑟 whose right
endpoint is 𝑗 (the left endpoint can be any position 𝑖 ≤ 𝑗).

Problem 3 (Multi-Pattern Matching). Let Σ be a finite alphabet, 𝑟0, 𝑟1, . . . , 𝑟𝑘−1 be a sequence of
𝑘 regular expressions over Σ, and𝑤 be a finite string over Σ. For every 𝑖 = 0, 1, . . . , 𝑘 − 1 compute
the number ⟦𝑟𝑖⟧(𝑤) of matches for the pattern 𝑟𝑖 .

Notice that we are considering a computational problem that is more general than purely Boolean
pattern matching. We choose this problem in order to have a more direct comparison with the GPU
engine HotStart (see Section 5).

3 Overview of HybridSA
HybridSA uses bit parallelism to simulate NFA transitions more effectively by taking advantage
of the simple matrix structure of the NFAs for real-world regexes. In this section, we present four
families of kernels used in HybridSA to accelerate regexes on the GPU: ShiftAnd, ShiftAndGap,
ShiftAndDist, and ShiftAndOps. We also present a solution to the multi-pattern matching problem
(which is embarrassingly parallel) using the CUDA programming model.

3.1 Shift-And Algorithm
Shift-And [Baeza-Yates and Gonnet 1992] is a bit-parallel algorithm that uses bitwise operations
to simulate the execution of automata. It consists of two steps: (1) preprocessing of the pattern to
derive bit masks that encode the NFA for the pattern, and (2) matching over the input text. An
important restriction is that the pattern length must be smaller than the register size (32 bits on the
GPU). Shift-And can be viewed as the simulation of a homogeneous automaton, where the states
can be placed in order 𝑞0, 𝑞1, . . . , 𝑞𝑛−1 on a line and each transition is from a state 𝑞𝑖 to a neighboring
state 𝑞𝑖+1. This transition pattern does not require the matrix multiplication operation seen in
Algorithm 1. In fact, matrix multiplication can be replaced by a bitwise shift operation. Compared

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 331. Publication date: October 2024.

331:6 Alexis Le Glaunec, Lingkun Kong, and Konstantinos Mamouras

𝑞0 : [ab] 𝑞1 : c

𝑞2 : c 𝑞3 : e

(a)

Input a c e

next 0101 0111 1101
labels 0001 0110 1000
states 0001 0110 1000

nMatches 0 1 2

(b)

Fig. 2. Shift-And execution for the pattern 𝑟 = [ab]c|ce? over the input string ace .

to Algorithm 1, the Shift-And algorithm can only encode transitions of the form (𝑖) → (𝑖 + 1). In
particular, it cannot simulate back edges, i.e., transitions of the form (𝑖) → (𝑗) where 𝑗 ≤ 𝑖 .

Example 4. Consider the regex 𝑟 = [ab]c|ce? . The automaton A1 of Fig. 2a recognizes the
language of 𝑟 . The main idea of the Shift-And algorithm is to execute all the transitions (𝑖) → (𝑖 +1)
with arithmetic and bitwise operations. The initial (resp. final) mask is maskInitial = 0101 (resp.
maskFinal = 1110) and encodes the positions of the initial (resp. final) states. After consuming
the character a , we start by performing the transitions with

next = (states ≪ 1) ORmaskInitial = (0000 ≪ 1) OR 0101 = 0101 .

Compared to Example 2, we have replaced matrix multiplication with a shift left operation. Then,
we compute the active states that match letter a with

states = next AND labels[a] = (0101 AND 0001) = 0001 .

This means that the initial state 𝑞0 is active. To check if there is a match, we compute the Boolean
test ((states ANDmaskFinal) ≠ 0000), which is equal to false. So, there is no match.
After consuming letter c , we have next = (0001 ≪ 1) OR 0101 = 0111 . We compute

states = (0111 AND 0110) = 0110 . As is_final = ((0110 AND 1110) ≠ 0000) = true, we
report a match. Finally, after consuming letter e , we have next = (0110 ≪ 1) OR 0101 = 1101 ,
states = (1101 AND 1000) = 1000 , and is_final = ((1000 AND 1110) ≠ 0000) = true.

3.2 Shift-And on a GPU
CUDA devices consist of single-instruction, multiple threads (SIMT) processors called Streaming
Multiprocessors (34 on RTX 4060Ti). Each multiprocessor has a limited number of 32-bit registers
(65 K registers per SM), shared memory that is local to a multiprocessor (100 KB on RTX 4060Ti) and
global memory that is shared among the multiprocessors (8GB on RTX 4060Ti). CUDA threads are
executed on a multiprocessor, 32 threads at a time, in a CUDA warp. Within a warp, all 32 threads
execute the same instruction at every step. CUDA warps are grouped in CUDA thread blocks, which
are scheduled to the device’s multiprocessors and executed in parallel. To execute code on the
GPU, programmers implement functions called CUDA kernels using a variant of C++. Each kernel
execution is parameterized by (1) the number of CUDA thread blocks to execute in parallel, and (2)
the number of threads per CUDA thread block. The organization of all threads of a kernel in blocks
is referred to as the thread grid. All threads created during kernel invocation run the same piece
of code. They are differentiated by using the special variables blockIdx , which specifies the block
identifier of the current thread, and threadIdx , which specifies the current thread identifier within
its block. More information about the CUDA programming model can be found in [NVidia 2024].

We propose an efficient CUDA implementation of the Shift-And algorithm for the embarrassingly
parallel multi-pattern matching problem. In our algorithm, each CUDA thread simulates the

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 331. Publication date: October 2024.

HybridSA: GPU Acceleration of Multi-pattern Regex Matching using Bit Parallelism 331:7

Patterns

NFA0

NFA31

NFA32

NFA63

CUDA Grid for ShiftAnd<<<3, 128>>>

batch 1

batch 0
block 0

block 1

block 2

local warp
id

21 3 4

blocks
(3)

threads per block (128)

warp 0

NFA 0-
31

warp 1

NFA 32-
63

warp 2

NFA 64-
95

warp 3

NFA 96-
127

NFA383

warp 4

NFA 128-
159

warp 5

NFA 160-
191

warp 6

NFA 192-
223

warp 7

NFA 224-
255

warp 8

NFA 256-
287

warp 9

NFA 288-
319

warp
10

NFA 320-
351

warp
11

NFA 352-
383

Fig. 3. Layout of the NFAs on the GPU for a grid of size (3,128).

execution of one NFA. This means that a warp, which is a collection of 32 threads, executes a group
of 32 NFAs, which we call a batch. Fig. 3 shows the layout of the Shift-And NFA batches in the CUDA
grid. Assuming that our input pattern set consists of 𝑛 regexes, each regex and its corresponding
Glushkov NFA is uniquely determined by a number 𝑖 in the range 0, 1, . . . , 𝑛 − 1. We call this the
global NFA identifier of the automaton. The 𝑛 NFAs are grouped into ⌈𝑛/ N_NFAS_PER_BATCH ⌉ batches,
where N_NFAS_PER_BATCH = 32. The NFA with global identifier 𝑖 is placed in the batch with identifier
⌊𝑖/ N_NFAS_PER_BATCH ⌋ and it has a batch-local identifier 𝑗 = 𝑖 mod N_NFAS_PER_BATCH , which we call
a local NFA identifier. The data that describes the NFAs of a batch is organized in the structure
Batch_SA (see below). For𝑇 = 𝑢32 (type of GPU registers), the size of the Batch_SA structure is equal
to 2 · N_NFAS_PER_BATCH ·sizeof (𝑢32)+256 · N_NFAS_PER_BATCH ·sizeof (𝑢32) = 2 ·32 ·4+256 ·32 ·4 ≈ 32 KB
stored in global memory for a given batch. For each NFA, this structure contains the mask of initial
states, the mask of final states, and the mask for each character of the input alphabet. The data in
Batch_SA uses a carefully chosen layout to ensure all thread accesses in a warp are coalesced.

template<typename T> struct Batch_SA {
T masks_initial[N_NFAS_PER_BATCH]; // masks for initial states
T masks_final[N_NFAS_PER_BATCH]; // masks for final states
T masks_char[N_CHARS][N_NFAS_PER_BATCH]; // masks for states that match each character

};

More precisely, the initial and final masks are 1D arrays indexed by a local NFA id (index 0 to 31)
for a given batch. The character mask is a 2D array stored in a character-first order. The purpose of
this layout is to have coalesced accesses when reading the character mask for the current input
character. All Batch_SA arrays are parameterized by a type 𝑇 that specifies the data type used to
encode sets of states (it can be something other than 32-bit, the register size of the GPU). Thus,
Shift-And can be extended to any data type implementing the shift left operation (≪), bitwise or
(OR), bitwise and (AND), and the equality operator (=).

Algorithm 2 presents pseudocode for the Shift-And kernel. We will use the example of a problem
instance with 384 NFAs to explain the algorithm. We will use 384 CUDA threads to execute the
NFAs in parallel. These threads will be organized in a thread grid with𝑀 = 3 CUDA blocks and
𝑁 = 128 threads per block. This means that there will be 4 warps per block. Notice that𝑀 ·𝑁 = 384.
We invoke the kernel with ShiftAnd<<<M,N>>> . The parameters inside the angled brackets define the
CUDA grid dimension which is of size𝑀 × 𝑁 = 384 in this example. Fig. 3 shows the mapping of
the NFAs onto the CUDA grid. A batch (32 NFAs) is executed by a CUDA warp (32 threads) and a

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 331. Publication date: October 2024.

331:8 Alexis Le Glaunec, Lingkun Kong, and Konstantinos Mamouras

Algorithm 2: Shift-And on the GPU
1 Kernel ShiftAnd<T> (output, batches, text) :

// Each thread of the grid handles the execution of exactly one NFA

// blockId is the block identifier in the current grid (blockIdx.x in CUDA)

// threadId is the thread identifier within the current block (threadIdx.x in CUDA)

// N_THREADS_PER_WARP = 32 is a constant of the CUDA programming model

2 localWarpId ← threadId ÷ N_THREADS_PER_WARP // warp id within the block

// nThreadsPerBlock is the number of threads per block (blockDim.x in CUDA)

3 assert nThreadsPerBlock mod N_THREADS_PER_WARP = 0
4 nWarpsPerBlock ← nThreadsPerBlock ÷ N_THREADS_PER_WARP // # warps in each block

5 globalWarpId ← blockId · nWarpsPerBlock + localWarpId // warp id within the grid

// Each warp of the grid handles exactly one batch of NFAs

// Each batch contains N_THREADS_PER_WARP NFAs

6 batchId ← globalWarpId // identifier for the batch to be processed

7 &BatchSA<T> batch← &batches[batchId] // pointer to batch

8 localNfaId ← threadId mod N_THREADS_PER_WARP // NFA id within the warp/batch

9 𝑇 maskInitial ← batch.masks_initial[localNfaId] // mask of initial states

10 𝑇 maskFinal ← batch.masks_final[localNfaId] // mask of final states

// Execution of homogeneous NFA:

11 𝑇 states← 0 // set of active states

12 nMatches← 0 // number of matches

13 for 𝑐 in text do // left-to-right pass over input text
14 mask ← batch.masks_char[𝑐] [localNfaId] // get mask for character 𝑐

15 states← ((states ≪ 1) ORmaskInitial) ANDmask // execute transition

16 nMatches← nMatches + ((states ANDmaskFinal) ≠ 0)
17 globalNfaId ← batchId · N_NFAS_PER_BATCH + localNfaId
18 assert globalNfaId = blockId · nThreadsPerBlock + threadId
19 output [globalNfaId] ← nMatches

block corresponds to 4 warps for a total of 384 NFAs in the dataset. There are 128 threads per block
or, equivalently, 128 NFAs per block.
For example, the NFA with global identifier 200 belongs to block 1 and is executed by the

warp with global id 6. At runtime, the CUDA scheduler dispatches blocks to multiprocessors
(SM) and the SM scheduler selects a warp to be executed. Suppose that block 1 is dispatched
to SM0 which executes warp 6 that contains NFA 200. In Algorithm 2, the execution of NFA
200 (in parallel with all the NFAs of warp 6) starts by retrieving blockId, the block identifier in
the grid, and threadId, the thread identifier within the block. For NFA 200, we have blockId = 1
and threadId = 72 as NFA 200 belongs to block 1 and is the 73rd NFA in the block (out of 128).
To retrieve the Shift-And masks, which are stored per batch, we need to calculate the global
batch id and the local NFA id. First, we calculate the local warp id (within the block) as follows:
localWarpId = threadId ÷ N_THREADS_PER_WARP = 72 ÷ 32 = 2. Then, we calculate the global warp
id (within the grid) by globalWarpId = blockId · nWarpsPerBlock + localWarpId = 1 · 4 + 2 = 6. Since
one batch corresponds exactly to one warp, we also obtain that batchId = 6. We calculate the local
NFA id by localNfaId = threadId mod N_THREADS_PER_WARP = 72 mod 32 = 8. Now, we can obtain
the masks maskInitial and maskFinal by indexing with the local NFA id.
From Line 11, the algorithm starts with the simulation of the execution of the NFA. For every

character 𝑐 of the input text, we fetch the character mask by first indexing using 𝑐 and then using the
local NFA id. We continue to simulate the transition of the NFA using the Shift-And algorithm. This
requires only 1 left shift, 1 bitwise OR, and 1 bitwise AND. We continue to check whether the pattern

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 331. Publication date: October 2024.

HybridSA: GPU Acceleration of Multi-pattern Regex Matching using Bit Parallelism 331:9

matches at the current location by comparing the active states with the final states (if they overlap,
then there is a match). At the end of the execution, we calculate the global NFA id (within the entire
pattern set) as follows: globalNfaId = batchId · N_NFAS_PER_BATCH + localNfaId = 6 · 32 + 8 = 200 and
we store the number of matches for NFA 200 in the output array.

In Algorithm 2, the layout and access pattern of the Batch_SA structure are carefully chosen to
reduce the latency incurred by accesses to the off-chip global memory. In fact, we make sure that
all the threads within a warp make contiguous memory accesses, generally referred to as coalesced
accesses. In the Shift-And pseudocode, the 32 threads of a warp access the same Batch_SA structure
(batchId is computed directly from the blockId which is identical for the threads in a warp). Then,
the 1-dimensional mask arraysmaskInitial andmaskFinal are indexed with localNfaId, which takes
values from 0 to 31. The 2-dimensional arraymasks_char is accessed with two indexes: a character 𝑐
and an index localNfaId. For a fixed character 𝑐 ,masks_char[𝑐] is a row of the 2D array and is stored
in consecutive memory locations. For this reason, the memory accessesmasks_char[𝑐] [localNfaId]
in a warp are coalesced. More details about memory coalescing can be found in [NVidia 2013a].
Algorithm 2 does not contain any branching that could possibly make the threads of a warp diverge.
Thread divergence occurs when at least two threads disagree on the execution path within a warp
and can be caused by a data-dependent conditional branch. In the event of a thread divergence,
the warp executes each branch path taken serially, and the threads that are not on that path are
disabled. Algorithm 2 does not use any shared memory [NVidia 2013b], which is a type of memory
that can be used for inter-thread communication within a warp (in fact, within a thread block), and
that often requires warp-level synchronization leading to additional complexity.

3.3 Extending Shift-And
The Shift-And algorithm only supports regular expressions that can be rewritten as a union of
strings, which accounts for roughly 20% of all regexes over the datasets of Section 5. We would like
to accelerate a larger percentage of the regular expressions on the GPU. Therefore, we propose
extensions to the Shift-And algorithm to support more classes of regular expressions on the GPU.

ShiftAndDist. Shift-And restricts transitions from a state (𝑖) to the next state (𝑖 + 1), but many
regular expressions require transitions that step over some states. We also need to support self-loops,
i.e., transitions from state (𝑖) to itself. To support more NFAs, we can generalize the bit-parallel
simulation of transitions to distances other than 1. This is the main idea of the ShiftAndDist kernel.
We group together NFAs with transition distance bounded above by a constant 𝐷 . Algorithm 3
presents the CUDA kernel for the ShiftAndDist algorithm. The kernel is parameterized with the
datatype 𝑇 and the maximum distance 𝐷 to execute transitions of distances from 0 to 𝐷 (inclusive).
Therefore, we can support all transitions of the form (𝑖) → (𝑖 + 𝑑) with 0 ≤ 𝑑 ≤ 𝐷 , which we
call shift transitions. The number of operations needed for ShiftAndDist is proportional to the
maximum transition distance 𝐷 . We use the structure Batch_SA_Dist for representing the NFAs
that are handled by ShiftAndDist. Compared to Batch_SA , we add the 2-dimensional mask array
masks_dist, wheremasks_dist[𝑑] contains the source states of transitions of distance 𝑑 . All threads
within a warp always access the same memory location in maskPerDist (see lines 10 and 12), which
ensures coalesced memory accesses. Moreover, ShiftAndDist completely avoids thread divergence.

template<typename T, uint8_t D> struct Batch_SA_Dist {
T masks_initial[N_NFAS_PER_BATCH]; // masks for initial states
T masks_final[N_NFAS_PER_BATCH]; // masks for final states
T masks_dist[D + 1][N_NFAS_PER_BATCH]; // masks for source states of edges with a given length
T masks_char[N_CHARS][N_NFAS_PER_BATCH]; // masks for states that match each character

};

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 331. Publication date: October 2024.

331:10 Alexis Le Glaunec, Lingkun Kong, and Konstantinos Mamouras

Algorithm 3: ShiftAndDist for distance D on the GPU
1 Kernel ShiftAndDist<T,D> (output, batches, text) :
2 . . . // compute batchId and localNfaId as in ShiftAnd

3 &BatchSADist<T,D> batch← &batches[batchId] // pointer to batch

4 𝑇 maskInitial ← batch.masks_initial[localNfaId] // mask of initial states

5 𝑇 maskFinal ← batch.masks_final[localNfaId] // mask of final states

6 𝑇 [] maskPerDist ← batch.masks_dist // pointer to masks for each distance ≤ 𝐷

7 𝑇 states← 0 // set of active states

8 nMatches← 0 // number of matches

9 for 𝑐 in text do // left-to-right pass over input text
10 next ← states ANDmaskPerDist [0] // states with a self-loop

11 for 𝑑 = 1, . . . , 𝐷 do
12 next ← next OR ((states ANDmaskPerDist [𝑑]) ≪ 𝑑)
13 mask ← batch.masks_char[𝑐] [localNfaId] // get mask for character 𝑐

14 states← (next ORmaskInitial) ANDmask // execute transition

15 nMatches← nMatches + ((states ANDmaskFinal) ≠ 0)
16 globalNfaId ← batchId · N_NFAS_PER_BATCH + localNfaId
17 output [globalNfaId] ← nMatches

Example 5. Consider the regex 𝑟 = ab{0,2}c . The automaton below recognizes the language of 𝑟 .

𝑞0 : a 𝑞1 : b 𝑞2 : b 𝑞3 : c

In this example, the maximum transition distance for the NFA is 𝐷 = 3 and it corresponds to the
dashed arrow. Using Shift-And, we are only able to simulate the solid line transitions (distance 1).
ShiftAndDist adds more expressiveness to our implementation by allowing for transitions with
various distances. Here, the loop at line 11 in Algorithm 3 will simulate transitions of distances 0, 1,
2 and 3 (even though there is no transition of distance 0).

ShiftAndGap. We have implemented the specialized algorithm ShiftAndGap for the commonly
occurring regexes that contain gap transitions such as 𝑎𝑏{0, 𝑘}𝑐 with the transition going from state
a to state c. The structure Batch_SA_Gap extends the existing Batch_SA structure with two additional
fields: maskGapI and maskGapF . The mask maskGapI contains the positions of the states right
before gaps, andmaskGapF contains the positions of the states right after gaps. Algorithm 4 presents
the pseudocode for ShiftAndGap. To efficiently compute the 𝜀-transitions, we use a bit trick at line
13. For datatype𝑇 = 𝑢32, the size of the Batch_SA_Gap is of about 4 · N_NFAS_PER_BATCH · sizeof (𝑢32) +
N_CHARS · N_NFAS_PER_BATCH · sizeof (𝑢32) = 4 · 32 · 4 + 256 · 32 · 4 ≈ 33KB which is roughly the
same as for Batch_SA . In general, the batch is dominated by the size of masks_char.

template<typename T> struct Batch_SA_Gap {
T masks_initial[N_NFAS_PER_BATCH]; // masks for initial states
T masks_final[N_NFAS_PER_BATCH]; // masks for final states
T masks_gap_initial[N_NFAS_PER_BATCH]; // masks for gap-initial states
T masks_gap_final[N_NFAS_PER_BATCH]; // masks for gap-final states
T masks_char[N_CHARS][N_NFAS_PER_BATCH]; // masks for states that match each character

}

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 331. Publication date: October 2024.

HybridSA: GPU Acceleration of Multi-pattern Regex Matching using Bit Parallelism 331:11

Algorithm 4: ShiftAndGap on the GPU
1 Kernel ShiftAndGap<T> (output, batches, text) :
2 . . . // compute batchId and localNfaId as in ShiftAnd

3 &BatchSAGap<T> batch← &batches[batchId] // pointer to batch

4 𝑇 maskInitial ← batch.masks_initial[localNfaId] // mask of initial states

5 𝑇 maskFinal ← batch.masks_final[localNfaId] // mask of final states

6 𝑇 maskGapI ← batch.masks_gap_initial[localNfaId] // mask of gap-initial states

7 𝑇 maskGapF ← batch.masks_gap_final[localNfaId] // mask of gap-final states

8 𝑇 states← 0 // set of active states

9 nMatches← 0 // number of matches

10 for 𝑐 in text do // left-to-right pass over input text
11 mask ← batch.masks_char[𝑐] [localNfaId] // get mask for character 𝑐

12 states← ((states ≪ 1) ORmaskInitial) ANDmask // execute transition on 𝑐

// epsilon transitions for gaps:

13 eps← (maskGapF − (states ANDmaskGapI)) AND (NOTmaskGapF)
14 states← states OR eps
15 nMatches← nMatches + ((states ANDmaskFinal) ≠ 0)
16 globalNfaId ← batchId · N_NFAS_PER_BATCH + localNfaId
17 output [globalNfaId] ← nMatches

Table 1. Execution of the kernel ShiftAndGap<u32> for the pattern 𝑟 = ab{0,4}c and the string abbc .

Input a b b c

states (before line 11) 000000 011111 011110 011100
states (after line 12) 000001 011110 011100 100000
eps (after line 13) 011111 000000 000000 000000
states (after line 14) 011111 011110 011100 100000

nMatches 0 0 0 1

Example 6. Consider the regex 𝑟 = ab{0,4}c . The following automaton A1 (nondeterministic
with epsilon transitions) recognizes the language of 𝑟 .

𝑞0 : a 𝑞1 : b 𝑞2 : b 𝑞3 : b 𝑞4 : b 𝑞5 : c

𝜀𝜀𝜀𝜀

In this example, we have a gap consisting of b{0,4} , the repetition of b between 0 and 4 times. In the
automaton, there is a single gap-initial state, namely 𝑞0, the state right before the gap b{0,4} . There
is a single gap-final state, namely 𝑞5, the state right after the gap. Table 1 presents the execution of
A1 by kernel ShiftAndGap<u32> for the input string abbc . The main idea of ShiftAndGap is to
execute all the epsilon transitions into the gap with arithmetic and bitwise operations. The values
of the masks used by ShiftAndGap for A1 are the following:

maskInitial = 000001 maskFinal = 100000 maskGapI = 000001 maskGapF = 100000

The character masks for a , b and c are 000001 , 011110 , and 100000 respectively. After
consuming the character a , we start by performing the transitions of distance 1 with

states = ((states ≪ 1) ORmaskInitial) ANDmask

= ((000000 ≪ 1) OR 000001) AND 000001 = 000001 .

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 331. Publication date: October 2024.

331:12 Alexis Le Glaunec, Lingkun Kong, and Konstantinos Mamouras

Then, we compute eps, the set of states activated by the epsilon transitions, in three steps. First, we
compute the set of gap-initial states that are active with

states ANDmaskGapI = 000001 AND 000001 = 000001 .

Then, we identify the destination states for the epsilon transitions with

eps = (maskGapF − (states ANDmaskGapI)) AND (NOTmaskGapF)
= (100000 − 000001) AND 011111
= 011111 AND 011111 ,

which is equal to 011111 . Notice that this bit vector includes the source state 𝑞0, but this is not an
issue because it is already enabled in states. So, at the end of the first round, states = 011111 .

Let us consider now the body of the loop when we continue to consume the character b . After
line 12 executes, we have that

states = ((011111 ≪ 1) ORmaskInitial) ANDmask

= ((011111 ≪ 1) OR 000001) AND 011110 = 011110 .

Then, we proceed to execute line 13, which computes the value

eps = (maskGapF − (states ANDmaskGapI)) AND (NOTmaskGapF)
= (100000 − (011110 AND 000001)) AND 011111 = 000000 .

This means that no epsilon transitions are taken. This is expected, because the epsilon transitions
are only taken right after we see a character a . So, after line 14, we have that states = 011110 .
Suppose that in the third round we consume the character b again. After line 12 is executed,

we have that states = ((011110 ≪ 1) OR 000001) AND 011110 = 111101 AND 011110 =

011100 . As in the previous round, we get that eps = 000000 after executing line 13. It follows
that states = 011100 after line 14.

In the final round of this example’s execution, we read the character c . After executing line 12,
we get states = ((011100 ≪ 1)OR 000001) AND 100000 = 111001 AND 100000 = 100000 .
No epsilon transitions are enabled and therefore eps = 000000 after line 13 is executed. So,
states = 100000 after line 14. This means that the variable nMatches will be incremented by 1 at
the end of this round, which indicates that a match of the regex has been found.

ShiftAndOps. In theory, ShiftAndDist can simulate all NFAs that have transitions of type
(𝑖) → (𝑗) where 𝑖 ≤ 𝑗 . This corresponds to NFAs without back edges. Given an NFA with 𝑛
states, the transition distance is bounded by 𝑛 − 1. However, in practice this bound can be too
large for efficient execution on the GPU. Take as example the regex [A-Z0-9_-.]{20,300}x3b from
the Suricata dataset. The bound on the transition distance here is 281, thus we would iterate 282
(including distance 0) times over the loop starting at line 11 in Algorithm 3, leading to disastrous
performance. Fig. 4 presents the distribution of the maximum transition distance across the Prosite,
Snort, SpamAssassin, Suricata and Yara datasets which are described in more detail in Section 5. We
observe that the majority of regexes have small maximum transition distance. For all datasets except
Prosite, a non-negligible number of regexes have maximum distance larger than 10. Moreover,
ShiftAndDist cannot support regexes with back edges, i.e. transitions of the form (𝑖) → (𝑗) with
𝑗 < 𝑖 . We introduce a new algorithm to deal efficiently with regexes containing long transitions
and to support those with backward transitions. We call it ShiftAndOps.

Algorithm 5 presents the ShiftAndOps kernel, which extends the kinds of NFA transitions that
are supported on the GPU by introducing multi-edge transitions.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 331. Publication date: October 2024.

HybridSA: GPU Acceleration of Multi-pattern Regex Matching using Bit Parallelism 331:13

Prosite Snort SpamAssassin Suricata Yara

1 10 100 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000
0

50

100

0

500

1000

1500

2000

0

500

1000

0

1000

2000

0

250

500

750

1000

maximum edge distance

c
o
u
n
t

Fig. 4. Distribution of the maximum transition distance across the datasets

We introduce two kinds of multi-edge transitions to efficiently execute regexes with disjunc-
tions: one-to-many and many-to-one transitions. A one-to-many transition has the form (𝑞𝑖) →
(𝑞𝑘1 , 𝑞𝑘2 , ...𝑞𝑘𝑛) and can be thought of as the collection of the 𝑛 individual NFA transitions 𝑞𝑖 → 𝑞𝑘1 ,
𝑞𝑖 → 𝑞𝑘2 , . . . , 𝑞𝑖 → 𝑞𝑘𝑛 . So, if 𝑞𝑖 is active, then the states 𝑞𝑘1 , 𝑞𝑘2 , . . . , 𝑞𝑘𝑛 are activated after
the transition is performed. One-to-many transitions arise in regexes with disjunctions such as
𝑟 = a(b|c?b|b+) , where the first state labeled with a activates the first states in each disjunction. A
many-to-one transition has the form (𝑞𝑘1 , 𝑞𝑘2 , . . . , 𝑞𝑘𝑛) → (𝑞𝑖) and is essentially the collection of the
𝑛 individual NFA transitions 𝑞𝑘1 → 𝑞𝑖 , 𝑞𝑘2 → 𝑞𝑖 , . . . , 𝑞𝑘𝑛 → 𝑞𝑖 . If any of the states 𝑞𝑘1 , 𝑞𝑘2 , . . . , 𝑞𝑘𝑛 is
active, then the state 𝑞𝑖 gets activated after the transition is performed. Many-to-one transitions are
useful for regexes with disjunctions such as 𝑟 = (a|b+|cd)e , where any of the states labeled with a ,
b or d can activate the state labeled with e . Compared to Algorithm 3 for the ShiftAndDist kernel,
Algorithm 5 adds a new block starting at line 14 to simulate the multi-edge transitions. The struc-
ture Batch_SA_Ops extends Batch_SA with the four additional mask arrays masks_shift, masks_dist,
masks_src and masks_dst. The bit vector masks_shift[𝑖] [localNfaId] contains the source states
for the 𝑖-th shift operation for NFA localNfaId of the batch. The integer shift_dist[𝑖] [localNfaId]
is the distance of the 𝑖-th shift operation. The bit vector masks_src[𝑖] [localNfaId] contains the
source states which activate the destination states in masks_dst[𝑖] [localNfaId] for NFA localNfaId
of the batch. In the block executing multi-edge transitions (starting at line 14), one-to-many and
many-to-one transitions are executed using the same instructions. Example 7 shows the masks
used by ShiftAndOps for the execution of regex 𝑟 = a(bc|de|fg|)h .

template<typename T, uint8_t M, uint8_t N> struct Batch_SA_Ops {
T masks_initial[N_NFAS_PER_BATCH]; // masks for initial states
T masks_final[N_NFAS_PER_BATCH]; // masks for final states
T masks_shift[M][N_NFAS_PER_BATCH]; // masks for source states of edges with a given length
uint32_t shift_dist[M][N_NFAS_PER_BATCH]; // distance for each shift operation
T masks_src[N][N_NFAS_PER_BATCH]; // source masks for multi-edge transitions
T masks_dst[N][N_NFAS_PER_BATCH]; // destination masks for multi-edge transitions
T masks_char[N_CHARS][N_NFAS_PER_BATCH]; // masks for states that match each character

};

Example 7. Consider the regex 𝑟 = a(bc|de|fg|)h . The following automaton A1 implements 𝑟 .

𝑞0 : a 𝑞1 : b 𝑞2 : c 𝑞3 : d 𝑞4 : e 𝑞5 : f 𝑞6 : g 𝑞7 : h

In this example, we have three kinds of operations: 1 one-to-many operation, 1 many-to-one
operation and 1 shift operation. The one-to-many operation corresponds to the dotted lines starting
from state 𝑞0 and going to the set of states {𝑞3, 𝑞5, 𝑞7}. The many-to-one operation, in dashed line,
goes from the set of states {𝑞2, 𝑞4} to the final state 𝑞7. The remaining transitions are of distance 1

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 331. Publication date: October 2024.

331:14 Alexis Le Glaunec, Lingkun Kong, and Konstantinos Mamouras

Algorithm 5: ShiftAndOps for M shifts and N multi-edge transitions on the GPU
1 Kernel ShiftAndOps<T,M,N> (output, batches, text) :
2 . . . // compute batchId and localNfaId as in ShiftAnd

3 &BatchSAOps<T,M,N> batch← &batches[batchId] // pointer to batch

4 𝑇 maskInitial ← batch.masks_initial[localNfaId] // mask of initial states

5 𝑇 maskFinal ← batch.masks_final[localNfaId] // mask of final states

6 𝑇 states← 0 // set of active states

7 nMatches← 0 // number of matches

8 for 𝑐 in text do // left-to-right pass over input text
9 next ← 0 // next active states

10 for 𝑖 = 0, . . . , 𝑀 − 1 do // take 𝑀 “shift” transitions
11 mask ← batch.masks_shift[𝑖] [localNfaId]
12 𝑑 ← batch.shift_dist[𝑖] [localNfaId]
13 next ← next OR ((states ANDmask) ≪ 𝑑)
14 for 𝑖 = 0, . . . , 𝑁 − 1 do // take 𝑁 “multi-edge” transitions
15 src ← batch.masks_src[𝑖] [localNfaId] // set of source states

16 dst ← batch.masks_dst[𝑖] [localNfaId] // set of destination states

17 if (states AND src) ≠ 0 then next ← next OR dst
18 mask ← batch.masks_char[𝑐] [localNfaId] // get mask for character 𝑐

19 states← (next ORmaskInitial) ANDmask // execute transition

20 nMatches← nMatches + ((states ANDmaskFinal) ≠ 0)
21 globalNfaId ← batchId · N_THREADS_PER_WARP + localNfaId
22 output [globalNfaId] ← nMatches

Table 2. Multi-edge masks of the kernel ShiftAndOps<u32, 1, 2> for the pattern 𝑟 = a(bc|de|fg|)h .

Operation src dst mask_src mask_dst
one-to-many (dotted line) 𝑞0 {𝑞3, 𝑞5, 𝑞7} 00000001 10101000
many-to-one (dashed line) {𝑞2, 𝑞4} 𝑞7 00010100 10000000

Table 3. Execution of the kernel ShiftAndOps<u32, 1, 2> for the pattern a(bc|de|fg|)h and the string abch .

Input a b c h

next (before line 14) 00000000 00000010 00000100 00000000
next (before line 18) 00000000 10101010 00000100 10000000
mask (after line 18) 00000001 00000010 00000100 10000000
states (after line 19) 00000001 00000010 00000100 10000000

nMatches 0 0 0 1

and are executed using 1 shift operation (solid line). Note that transition 𝑞0 → 𝑞1 (resp., 𝑞6 → 𝑞7)
can be encoded either in the one-to-many (resp., many-to-one) operation or in the shift operation.

Table 3 presents the execution ofA1 by kernel ShiftAndOps<u32, 1, 2> for the input string abch .
ShiftAndOps can execute all the transitions leading to a single state (resp., starting from a single
state) in one operation. The values of the masks used by the multi-edge transitions are shown in
Table 2. For the shift transition, we have mask_shift = 01101011 and shift_dist = 1 because the
states 𝑞0, 𝑞1, 𝑞3, 𝑞5, 𝑞6 are source states of transitions of distance 1. The character masks for a , b , c

and h are 00000001 , 00000010 , 00000100 and 10000000 respectively. After consuming the

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 331. Publication date: October 2024.

HybridSA: GPU Acceleration of Multi-pattern Regex Matching using Bit Parallelism 331:15

character a , we start by performing the shift transitions of distance 1 with

next = next OR ((states ANDmask) ≪ 𝑑)
= 00000000 OR ((00000000 AND 01101011) ≪ 1) = 00000000 .

To perform the one-to-many operation 𝑞0 → {𝑞3, 𝑞5, 𝑞7} we calculate
states AND src = 00000000 AND 00000001 = 00000000 .

Similarly, to perform the many-to-one operation {𝑞2, 𝑞4} → 𝑞7 we calculate

states AND src = 00000000 AND 00010100 = 00000000 .

This means that no multi-edge operations are applied and we have that next = 00000000 before
line 18. The value of states after line 19 is computed with

states = (next ORmaskInitial) ANDmask)
= (00000000 OR 00000001) AND 00000001 = 00000001 .

We proceed now to the second round. After consuming the character b , we have that

next = 00000000 OR ((00000001 AND 01101011) ≪ 1) = 00000010

before line 14. This corresponds to taking the shift transition from 𝑞0 to 𝑞1. The one-to-many opera-
tion 𝑞0 → {𝑞3, 𝑞5, 𝑞7} is enabled (because 𝑞0 is active in states), so we obtain next = 10101010 after
all transitions are performed. After line 19, we have that states = (10101010 OR 00000001)AND
00000010 = 00000010 .
For the third round, we consume the character c , and next = 00000000 OR ((00000010 AND

01101011) ≪ 1) = 00000100 before line 14. This corresponds to taking the shift transition from
𝑞1 to 𝑞2. No multi-edge operation is enabled, and therefore next is not updated. After line 19, we
have that states = (00000100 OR 00000001) AND 00000100 = 00000100 .

For the final round, we consume the character h , and next = 00000000 OR ((00000100 AND
01101011) ≪ 1) = 00000000 before line 14. Thismeans that the shift operation performs no tran-
sition. For the many-to-one operation {𝑞2, 𝑞4} → 𝑞7, we have that statesANDsrc = 00000100 AND
00010100 = 00000100 . So, we take the multi-edge operation and we have before line 18 that
next = 10000000 . The one-to-many operation𝑞0 → {𝑞3, 𝑞5, 𝑞7} is not performed (𝑞0 is not active in
states). After line 19, we have states = (10000000 OR 00000001) AND 10000000 = 10000000 .
As states ANDmaskFinal = 10000000 ≠ 00000000 , we report a match and increment nMatches.

We need 13 basic operations (i.e., bitwise and memory access operations) to execute 𝑟 with
ShiftAndOps<u32, 1, 2>. We would need 31 basic operations if we used ShiftAndDist<u32, 7>.
Table 4 has more details on the number of basic operations required for executing our kernels.

Kernel datatype. Until now, we have only considered regexes of size at most 32 (# character
classes), because registers on the GPU are 32 bits wide. However, if we want to support a large
number of regular expressions, we need to extend this bound. Fig. 5 presents the distributions of
the number of NFA states across the datasets. The medians are: 16 for Prosite, 24 for Snort, 32 for
SpamAssassin, 23 for Suricata and 48 for Yara. From the median, we already know that more than
half of the regexes would not be handled with the u32 datatype for the SpamAssassin and Yara
datasets. We observe that for the Prosite dataset, the majority of regexes can be simulated using
Shift-And. For the other datasets, a large portion of the regexes have more than 32 states. This
shows there is a need for wider datatypes. The NVCC compiler for CUDA code supports bitwise
operations up to 128 bits. For each of the 4 kernel families (Shift-And, ShiftAndDist, ShiftAndGap
and ShiftAndOps), we have created variants for datatype up to u256.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 331. Publication date: October 2024.

331:16 Alexis Le Glaunec, Lingkun Kong, and Konstantinos Mamouras

Prosite Snort SpamAssassin Suricata Yara

1 10 100 1000 10000 1 10 100 1000 10000 1 10 100 1000 10000 1 10 100 1000 10000 1 10 100 1000 10000
0

25

50

75

0

200

400

600

0

100

200

300

400

0

250

500

750

0

100

200

300

number of NFA states

c
o
u
n
t

Fig. 5. Distribution of the number of NFA states per regex across the datasets. Vertical line indicates the
median.

Table 4. Summary of the operations per input character to simulate the transitions for the ShiftAnd, Shif-
tAndGap, ShiftAndDist and ShiftAndOps kernels. We use the symbol≪ for the left shift operation, OR for
bitwise or, AND for bitwise and, and NOT for bitwise complement.

kernel mem. access ≪ OR AND NOT total

ShiftAnd<u32> 1 1 1 1 0 4
ShiftAndGap<u32> 1 1 2 4 1 9
ShiftAndDist<u32,D> D + 1 D D + 1 D + 1 0 4D + 3
ShiftAndOps<u32,M,N> 2(M+N) M M + N M + N 0 5M + 4N

Number of operations. Table 4 summarizes the number of bitwise operations and memory
accesses per input character for each kernel. We exclude the operations needed to calculate the
number of matches. For ShiftAnd and ShiftAndGap, the total number of basic operations is
constant. For ShiftAndDist<D>, it is linear in the maximum distance𝐷 . For ShiftAndOps<M,N>,
the total number of basic operations in linear in 𝑀 (# shift operations) and 𝑁 (# multi-edge
operations). The kernel ShiftAnd<u32> uses the least number of operations, namely 4. The kernels
ShiftAndGap<u32> and ShiftAndOps<u32, 1, 1> both require 9 operations, thus we expect their
performance to be similar. For datatypes𝑇 that are wider than u32, each bitwise operation requires
several machine instructions. Therefore, we generally expect that doubling the width of the datatype
(for instance, from 64 to 128 bits) will double the number of machine instructions executed per
input character (for instance, 16 operations for ShiftAnd<u128>).

ShiftAndOps

ShiftAndDist ShiftAndGap

ShiftAnd

Fig. 6. Hasse diagram for GPU
kernel expressiveness.

Kernel expressiveness. Table 5 presents a summary of the ker-
nels’ capabilities to simulate the different types of transitions men-
tioned earlier. We observe that ShiftAndGap is more expressive
than ShiftAnd as it can execute all the transitions that ShiftAnd
can execute in addition to the gap transitions. ShiftAndDist and
ShiftAndGap are incomparable because even though ShiftAndGap
can execute transitions with distance greater than 1, those are limited
to gap transitions whereas ShiftAndDist<u32,D> cannot execute
gap transitions with distance greater than𝐷 . When𝑁 > 0, the kernel
ShiftAndOps<u32,M,N> is more expressive than ShiftAndGap<u32>, as a gap transitions can
be expressed as a one-to-many transition. By construction, ShiftAndOps<u32,M + 1,N> is more
expressive than ShiftAndDist<u32,M> as the shift transitions from 0 to𝑀 can be executed with
𝑀 + 1 shift transitions (not necessarily for consecutive distances unlike ShiftAndDist) in addition
to the𝑀 multi-edge transitions. Fig. 6 shows the relationships between GPU kernels using a Hasse
diagram, in which kernels are ordered by expressiveness.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 331. Publication date: October 2024.

HybridSA: GPU Acceleration of Multi-pattern Regex Matching using Bit Parallelism 331:17

Table 5. Summary of the expressiveness of the ShiftAnd, ShiftAndGap, ShiftAndDist and ShiftAndOps kernels.
∞ means that the distance is only bounded by the number of states.

kernel shifts min. dist. max. dist. backedges self-loops gaps multi-edges

ShiftAnd<u32> 1 1 1 ✗ ✗ ✗ ✗

ShiftAndGap<u32> 1 1 1 ✗ ✗ ✓ ✗

ShiftAndDist<u32,D> 𝐷 + 1 0 +∞ ✗ ✓ ✗ ✗

ShiftAndOps<u32,M,N> 𝑀 −∞ +∞ ✓ ✓ ✓ 𝑁

4 Compilation and Optimizations
Recall that an instance of the multi-pattern matching problem consists of a set of patterns, given as
regexes, and an input string over which to search for pattern occurrences. This section describes
the compilation of regexes into NFA data that can be used by the GPU kernel families ShiftAnd,
ShiftAndDist, ShiftAndGap and ShiftAndOps that were described in Section 3.
First, we describe the compilation process which transforms a dataset in the form of a set of

regexes into masks (i.e., bit vectors) that are used for execution on the GPU. Then, we explain how
we determine for each pattern whether it should execute on the CPU or on the GPU using a specific
kernel. Finally, we discuss two transformations that allow us to move a regex (NFA) from a more
computationally expensive kernel to a cheaper one.

Compilation procedure and execution. Initially, the input dataset is given as a set of reg-
ular expressions. HybridSA carefully chooses a list of kernels to run on the GPU. The regexes
that cannot be handled by the chosen GPU kernels are executed on the CPU using Hyperscan.
Since modern CPUs typically have several cores, the CPU workload is parallelized using threads.
Hyperscan accepts a set of regexes as input, so no transformation of the patterns is needed.
For the GPU part, kernel execution uses a representation of NFAs in terms of bit masks, as de-
scribed in Section 3. For a given regular expression, the bit masks used to represent its NFA
differ based on whether it is executed (for example) by ShiftAnd, ShiftAndOps<u32, 1, 1>, or
ShiftAndOps<64, 1, 1>. The procedure that transforms a regex dataset into batches of masks is
performed by a compilation library that we have implemented in Rust. It consists of 3 steps. In the
first step, each regex is mapped to the cheapest kernel that can execute it. For instance, consider
the regex 𝑟 = ab?c and the kernels ShiftAndDist<u32, 2> and ShiftAndDist<u32, 3>. The com-
piler will choose ShiftAndDist<u32, 2>, as it can execute 𝑟 and requires fewer operations than
ShiftAndDist<u32, 3>. In the second step, we compute the masks for each regex and its associated
kernel. For the regex 𝑟 = ab?c and kernel ShiftAndDist<u32, 2>, we compute the𝑚𝑎𝑠𝑘_𝑖𝑛𝑖𝑡𝑖𝑎𝑙
and𝑚𝑎𝑠𝑘_𝑓 𝑖𝑛𝑎𝑙 masks which contain respectively the positions of initial and final states as well as
𝑚𝑎𝑠𝑘_𝑑𝑖𝑠𝑡 [𝑑] for the source states of transitions of distance 𝑑 between 0 and 2 and𝑚𝑎𝑠𝑘_𝑐ℎ𝑎𝑟 [𝑐]
containing the positions of states whose label matches the character 𝑐 . In the third step, masks
belonging to regexes to be executed by the same kernel variant are grouped together into batches
(see Section 3) of 32 regexes to form a batch database. This database is used during GPU execution.

For the execution, our kernels are implemented in CUDA and the kernel variants are created
using C++ templates. We have chosen not to generate specialized code, as it would not provide a
substantial performance benefit. For a given dataset, we start by compiling the regex dataset. Then,
we invoke the CUDA kernels concurrently using a Foreign Function Interface which binds the
CUDA functions to Rust functions.

Choice of kernels to execute on the GPU. We are given a set of regular expressions. First, we
need to decide which regexes to put on the GPU. Then, for regexes that are executed on the GPU,

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 331. Publication date: October 2024.

331:18 Alexis Le Glaunec, Lingkun Kong, and Konstantinos Mamouras

we need to choose the kernel that will execute it. For a fixed regex 𝑟 , there is a list of candidate
kernels. ShiftAndOps is the most expressive kernel, because it is capable of simulating any regex 𝑟 .
Nevertheless, it would not be wise to execute all the regexes on the GPU with the ShiftAndOps
kernel. Consider, for example, 𝑟 = a.{0,100}b . Executing 𝑟 with the ShiftAndOps or ShiftAndDist
kernels would require many bitwise operations, resulting in poor performance. Instead, it is better
to execute 𝑟 with ShiftAndGap, which requires fewer bitwise operations in this case. In general, our
compiler splits a set of regexes into two subsets: one subset that is executed on the GPU using our
CUDA kernels and the other is executed on the CPU with Hyperscan. The split is done to balance
the load between the CPU and the GPU. Then, for a given regex, we choose the kernel that will
execute it. The strategy we use consists in selecting the kernel with the least number of operations
that can simulate the regex like we did with 𝑟 above. Moreover, it is inefficient to execute a kernel
for only 1 NFA because the other 31 threads in the warp would not be performing useful work.
If 10 regexes are compiled for ShiftAndDist<u32, 4> and 22 regexes for ShiftAndDist<u32, 5>,
it is better to pack the batches by compiling all the 32 regexes for ShiftAndDist<u32, 5> to use
a single batch instead of two. In practice, we have observed a reduction of wasted regexes (i.e.
padding regexes within a batch, that do not perform any meaningful instruction) by half thanks to
batch packing for the datasets considered in the experiment section.

Splitting between GPU and CPU. In our hybrid algorithm, regexes are split between GPU
and CPU and executed in parallel. To attain the best performance, the durations of GPU and CPU
processing should be as close as possible to prevent underutilizing the computational resources
(if one finished early, then it would sit idle). We use a training stage to choose how the regexes
are split between the CPU and the GPU. For a given dataset, we have collected a set of input
strings that are representative of the application. The training input strings are disjoint from the
input strings used for the performance evaluation. We consider different choices 𝐾𝑖 , where 𝐾𝑖
is a set of kernels. Every 𝐾𝑖 splits the dataset into two parts: 1) the regexes that can be handled
by 𝐾𝑖 on the GPU, and 2) the rest of the regexes that go to the CPU. Each choice 𝐾𝑖 has a score
𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (𝐾𝑖), which is the throughput of HybridSA for the GPU-CPU split induced by 𝐾𝑖 .
Finding an optimal CPU-GPU split is not easy, as the number of possible choices is astronomical
(i.e. 2# regexes). We use a "fastest kernel first" strategy which gives good performance while executing
in a timely manner. In this strategy, we start by examining the choice 𝐾1 = {ShiftAnd<u32>},
then 𝐾2 = {ShiftAnd<u32>, ShiftAndDist<u32, 1>}, etc. The exploration of the choices stops
when we achieve peak throughput for HybridSA. This corresponds to having roughly the same
computation time on the GPU and the CPU. In practice, we observe that the balance between GPU
and CPU computation times is preserved when switching to the input strings of the experiments.

Distributivity Rewriting. We now consider the numbering problem. For a given NFA, there
are several possible numbering of the automaton states, which change the operations needed to
simulate it with our kernels. We perform some rewritings to reduce the number of operations to
simulate an NFA and ultimately accelerate more regexes on the GPU.
Our first rewriting is at the level of the regular expression, and is based on a distributivity

property that says that concatenation distributes over union. By distributivity, we can rewrite
(𝑟1 + 𝑟2) · 𝑟3 as 𝑟1 · 𝑟3 + 𝑟2 · 𝑟3. If we name𝑚 and 𝑛 the number of states respectively of 𝑟1 and 𝑟2 , we
observe that the rewriting replaced a transition of distance𝑚 +𝑛 into two transitions of distance𝑚
and 𝑛. This comes at the cost of more NFA states as 𝑟3 is duplicated. In addition to moving regexes
from expensive to cheaper kernels (in terms of the number of operations), the rewriting allows for
more regexes to be supported by the existing kernels, and thus to be accelerated on the GPU. In
practice, we apply distributivity rewriting when it allows us to move a regex from a slower kernel
to a faster kernel according to the ranking that we maintain in Table 6.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 331. Publication date: October 2024.

HybridSA: GPU Acceleration of Multi-pattern Regex Matching using Bit Parallelism 331:19

Example 8. Consider the regex 𝑟 = (a{1,2}|bc?)de . The following automaton A1 implements 𝑟 .

𝑞4 : d 𝑞5 : e

𝑞0 : a 𝑞1 : a

𝑞2 : b 𝑞3 : c

We note that the transition 𝑞0 → 𝑞4 has distance 4. After distributing the concatenation over the
union, i.e., (a{1,2}|bc?)de = (a{1,2}de|bc?de) , we obtain the following automaton A2:

𝑞0 : a 𝑞1 : a

𝑞4 : b 𝑞5 : c

𝑞2 : d 𝑞3 : e

𝑞6 : d 𝑞7 : e

Both A1 and A2 recognize the language of 𝑟 , but A2 reduces the maximum transition distance
from 4 to 2 compared to A1. Thus, after the rewriting and re-labeling of the states in each of
the connected components, 𝑟 can be executed with kernel ShiftAndDist<u32, 2> instead of
ShiftAndDist<u32, 4> before the rewriting which requires more operations (see Table 4).

Bounded repetition rewriting. In addition to the distributivity rewriting, we use another
rewriting over bounded repetitions to lower the maximum transition distance. The intuition
behind this rewriting is that we want to break down transitions into smaller transitions to reduce
the overall distance. The rewriting is based on the following identity over regular expressions:
𝜎{𝑘, 𝑑 · 𝑘} = (𝜎{1, 𝑑}){𝑘}. From a maximum distance of (𝑑 − 1) · 𝑘 + 1, we go down to a maximum
distance of 𝑑 . This rewriting can be generalized to regexes of the form 𝜎{𝑚,𝑛} when 𝑛 ≤ 𝑑 ·𝑚 to
reduce the maximum distance to 𝑑 . In practice, we would choose the minimum 𝑑 such that 𝑛 ≤ 𝑑 ·𝑚
to have the lowest possible maximum distance. With this rewriting, we are able to compile the
rewritten regex with a kernel that uses fewer operations than the original regex.

Example 9. Consider the regex 𝑟 = a{2,4}b . The following automaton A1 given by the Glushkov
construction recognizes the language of 𝑟 .

𝑞0 : a 𝑞1 : a 𝑞2 : a 𝑞3 : a 𝑞4 : b

Notice that transition 𝑞1 → 𝑞4 has distance 3. After applying the rewriting a{2,4}b = a{1,2}a{1,2}b

to 𝑟 , we obtain the following automaton A2:

𝑞0 : a 𝑞1 : a 𝑞2 : a 𝑞3 : a 𝑞4 : b

Both A1 and A2 recognize the language of 𝑟 , but A2 reduces the maximum transition distance
from 3 to 2 compared to A1.

5 Experiments
We have implemented HybridSA using the Rust programming language for the compiler and CUDA
for the GPU kernels. In this section, we evaluate the performance of HybridSA to answer the
following questions:
(1) What classes of regular expressions can HybridSA execute efficiently on the GPU?
(2) How well does HybridSA multi-pattern matching perform compared to existing state-of-the-

art tools?

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 331. Publication date: October 2024.

331:20 Alexis Le Glaunec, Lingkun Kong, and Konstantinos Mamouras

Experimental setup. The experiments were executed on a desktop machine running Ubuntu
22.04 and equipped with an Intel(R) Core(TM) i9-12900K CPU (16 cores, multithreading up to
24 threads), an NVIDIA GeForce RTX 4060 Ti (34 multiprocessors, Ada Lovelace architecture
with 8GB of global memory), and 32GB of memory. We compile the kernels with CUDA 12.2.
For each experiment, we run 10 trials and report the mean of the measurements. For the GPU
measurements, we take a similar approach to previous works and focus on the execution time
of the kernels, excluding memory transfers between CPU and GPU because they are negligible
and can be overlapped with computations. Throughput is calculated by dividing the input size (in
characters) by the execution time.

Evaluated schemes. We compare the performance of HybridSA against HotStart [Liu et al. 2020],
which is a state-of-the-art engine for multi-pattern matching on the GPU, and the state-of-the-art
CPU engine Hyperscan [Wang et al. 2019]. Since HybridSA uses both the CPU and the GPU, for a
fair comparison we also consider a hybrid combination of Hyperscan and HotStart that we call
Hyperscan+HotStart. A comparison between HybridSA and Hyperscan+HotStart, which use the
same computational resources (i.e., CPU and GPU), will show the performance improvement of
HybridSA due to the effectiveness of the bit-parallel kernels described in Section 3. To demonstrate
the effectiveness of the optimizations presented in Section 4, we evaluate two variants of HybridSA:
(1) HybridSA_no_opt, which uses the bit-parallel kernels, and (2) HybridSA_opt, which uses the
rewriting and batch packing optimizations. The kernels used to execute regexes on the GPU are
chosen per dataset following the compilation strategy described in Section 4.
We compare our implementation against the HotStart-MaC variant of the HotStart algorithm

presented in [Liu et al. 2020], which is the version with the best overall performance. It is based on
NFA execution, with various optimizations to reduce data movement and improve the compute
utilization of GPU resources. Compared to HybridSA, HotStart executes all the regexes on the GPU,
and the unit of computation of a thread in HotStart is the NFA state whereas, for HybridSA, a warp
executes a set of 32 NFAs. Moreover, the subset of regexes that are executed by HybridSA on the
GPU are input independent, meaning that the throughput is independent from the input. On the
opposite, the HotStart throughput depends on the input stream. More specifically, an input stream
that gives rise to many matches can degrade the overall throughput of HotStart. The HotStart
algorithm performs two steps: hot state execution followed by cold state execution. Hot states are
NFA states that are the most likely to get activated during matching, and in practice they are chosen
to be the initial states. If many cold states are active, the second stage duration will be impacted.
To use the full computational power of the CPU, we run Hyperscan in a multithreaded setting

with 24 threads, which is the number of threads maximizing the performance for the CPU we
use. Hyperscan can be parallelized over the input streams or the regexes. In our settings, we
parallelize over the input streams. We have observed that parallelizing over input streams has better
performance compared to parallelizing over regexes. This is because the execution time of regular
expressions is not uniform in Hyperscan, which can create an imbalance among the threads in the
case of regex parallelism. For the combination of HotStart and Hyperscan, we select the percentage
of regexes on the GPU maximizing the overall throughput, where regexes are chosen randomly.

Regex split between HotStart and Hyperscan. Finding an optimal CPU-GPU split for Hot-
Start+Hyperscan is not easy, as the number of possible choices is enormous (i.e., 2# regexes). We have
observed that the regexes that are expensive for Hyperscan are those that are highly nondetermin-
istic and that match frequently. But these are also the kinds of regexes that we have noticed are
expensive for HotStart. So, there does not seem to be a clear criterion for regexes that are expensive
for Hyperscan but cheap for HotStart, which could be used to inform the GPU-CPU split as we
did with HybridSA. Thus, we compare two choices of split: 1) split based on a training step to

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 331. Publication date: October 2024.

HybridSA: GPU Acceleration of Multi-pattern Regex Matching using Bit Parallelism 331:21

Table 6. Throughput (in MB/sec) for the top 10 fastest kernels on the GPU.

kernel throughput datatype d ops

ShiftAnd<u32> 222 u32 0 0
ShiftAndDist<u32, 1> 195 u32 1 0
ShiftAnd<u64> 180 u64 0 0
ShiftAndGap<u32> 174 u32 0 0
ShiftAndDist<u32, 2> 160 u32 2 0
ShiftAndDist<u32, 3> 147 u32 3 0
ShiftAndOps<u32, 1, 1> 139 u32 1 1
ShiftAndOps<u32, 1, 2> 125 u32 1 2
ShiftAndDist<64, 1> 124 u64 1 0
ShiftAndDist<u32, 4> 124 u32 4 0

select the percentage of regexes that go to the GPU to maximize the overall throughput (labeled
HotStart+Hyperscan_opt), and 2) the HybridSA’s CPU-GPU split.

Benchmarks. We evaluate the performance of HybridSA over 7 applications, which contain
regexes collected from real applications. These benchmarks are: (1) the Snort [Roesch 1999; Snort
2024] and (2) Suricata benchmarks [Suricata 2024] that contain patterns for network traffic, (3) the
Prosite benchmark that includes protein motifs from the PROSITE database [Roy and Aluru 2016;
Sigrist et al. 2009], (4) the Yara [Yara 2024] benchmarks that contain patterns that indicate the
presence of viruses, (5) the SpamAssassin benchmark [SpamAssassin 2024] that includes patterns
for detecting spam email, (6) the Hamming and (7) Levenshtein datasets containing DNA motifs
extracted from the Human genome [Consortium 2022]. Compared to the AutomataZoo [Wadden
et al. 2018] benchmark set, our application benchmarks are more up-to-date and contain more
regexes. We use 1GB input (split into input streams of size 8 KB) from real-world applications
(PCAP packets, Spam emails, binary viruses, Human genome) for each application.

5.1 Classes of Regexes on the GPU
HybridSA excels at executing regexes with structured transition pattern that can be efficiently
simulated on the GPU with bitwise operations. Fig. 7 compares the throughput performance of
variants of the ShiftAnd, ShiftAndGap, ShiftAndDist and ShiftAndOps kernels on the GPU over
100 batches (i.e. 3200 regexes) and present the kernels used on the GPU per dataset for the GPU part
of the hybrid algorithm HybridSA. Table 6 presents the top 10 kernels with highest throughput on
the GPU over 100 batches, which corresponds to a dataset of 3200 regexes. All the kernels in the top
10 have a high throughput of more than 100MB/s, ensuring an efficient execution on the GPU for
the regexes that can be executed by those kernels. Note that our implementation is compute-bound,
because the GPU simulates the execution of a large number of NFAs for each element of the input.
The throughput is relative to the number of regexes in the dataset, and it would increase for a
smaller dataset. Therefore, a GPU with more compute resources would enable higher throughput.

Datatype. In Table 6, which shows the top 10 kernels with the highest throughput, we only find
kernels with datatypes u32 and u64. As expected, ShiftAnd<u32> has the highest throughput at
around 220MB/s, followed by ShiftAndDist<u32, 1> and ShiftAnd<u64>. In general, when we
double the bit width of the datatype, we expect the throughput to be roughly divided by 2, given
that GPU registers are 32-bit wide. However, when we go from 32-bit to 64-bit, the throughput
only decreases from 222 to 180MB/s for ShiftAnd<u32>, and from 195 down to 124MB/s for

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 331. Publication date: October 2024.

331:22 Alexis Le Glaunec, Lingkun Kong, and Konstantinos Mamouras

ShiftAndDist<u32, 1>. This indicates an optimization at the level of the hardware to support
efficiently the 64-bit datatype, and suggests that our implementation can deal almost as well with
NFAs of size at most 64 as with NFAs of size at most 32. For datatypes u128 and u256, the throughput
is always lower than 60 MB/s. In Fig.7 (d), the compiler did not select kernels of datatype u256
and only the kernels with the highest throughput for datatype u128 (i.e., ShiftAnd<u128> and
ShiftAndDist<u128, 1>). It indicates that HybridSA can execute very efficiently on the GPU
NFAs that have less than 128 states and a simple transition pattern (at most distance 1) though
NFAs with more states and more complex transitions can also be executed efficiently on the GPU.
In fact, (d) indicates that the vast majority of regexes on the GPU are executed for datatypes
u32 and u64. For Yara, all the regexes executed on the GPU are handled by ShiftAnd<u32>
and ShiftAndDist<u32, 1>, two kernels of datatype u32. Those results for Yara are expected,
because most of the regexes in Yara have a simple structure where most transitions are of distance
1. For Prosite, a large number of regexes (83%) are executed with ShiftAnd<u32>, 11% with
ShiftAnd<u64> and the rest is executed with ShiftAndGap<u32>, because many regexes are of
the form 𝑎𝑏{0, 𝑘}𝑐 . For the Snort, SpamAssassin and Suricata datasets, more than 70% of regexes
are handled by kernels of datatype up to u64. Those results justify our choice to consider at most
the datatype u256, as the throughput for kernels with datatypes u128 and u256 is already quite low.
It also indicates that the GPU may not be a great fit for very large regular expressions, which is ok
because they represent only a tiny portion of the regexes in the datasets as shown in Fig. 5.

Number of operations. In Fig. 7 (b) and (c), we observe that for the 3 datatypes (u32, u64 and
u128), the throughput is divided by two going from distance 1 to distance 5. In practice, the kernel
with the largest distance executed on the GPU is ShiftAndDist<u32, 9> in Suricata. Therefore,
our choice to limit the kernels to at most distance 10 is justified. Moreover, over all the datasets,
the largest parameters used for ShiftAndOps are 4 shift transitions and 2 multi-edge transitions
which is below the limit we have of at most 5 shift transitions and 5 multi-edge transitions. It is also
consistent with (c) as the slope is flatter for kernels with 5 multi-edge operations compared to only
one multi-edge operation, which indicates that executing multi-edge transitions is more expensive
than executing shift transitions. The throughput is so low for the kernels ShiftAndOps<u128,M,N>
for 𝑀 ∈ [0, ..., 5] and 𝑁 ≥ 4 that no regular expression in the datasets is executed with those
kernels on the GPU. For this reason, we do not consider the datatype u256 at all for the kernel
ShiftAndOps at compile time.

5.2 Performance Results
Fig. 8 presents the performance results achieved by the HotStart, Hyperscan, Hyperscan+HotStart,
Hyperscan+HotStart_opt engines and the two variants of HybridSA: (1) HybridSA without opti-
mizations and (2) HybridSA_opt with both the rewriting optimizations and batch packing. The
horizontal axis is in log scale and is normalized to the throughput of HotStart. Table 7 presents the
corresponding absolute throughputs over the datasets. Table 8 presents the compilation times for
the engines over the datasets.

HybridSA against HotStart. Across all the datasets, the two variants of HybridSA outperform
HotStart by at least 11× (resp., 18×) for HybridSA (resp., HybridSA_opt). The minimum speedup
for HybridSA is attained for the Prosite dataset and the maximum speedup is attained for the
Yara dataset with about 230×. Compared to HotStart, HybridSA only offloads regexes that can be
efficiently executed on the GPU and delegates regexes with complicated access patterns to the CPU
engine, Hyperscan. This approach pays off, as for all the datasets but Yara, a vast majority of regexes
can still be handled on the GPU and a minority (less than 25%) is executed on the CPU. For the
Hamming and Levenshtein datasets, the large number of matches makes HotStart impractical, as

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 331. Publication date: October 2024.

HybridSA: GPU Acceleration of Multi-pattern Regex Matching using Bit Parallelism 331:23

222

180

99

52

174

104

55

50

100

150

200

32 64 128 256

datatype

th
ro

u
g
h
p
u
t

category
sa
sa_gap

(a)

195

160 147

124

106

93
91

84

76
71

124

95

80

67

56
48

41
39

37
33

66

46
38

29 26
22

19
17 16

14

50

100

150

200

1 2 3 4 5 6 7 8 9 10

d

th
ro

u
g
h
p
u
t

datatype
32
64
128

(b)

139

125
122

104 96

94
8584

83
82

727271

71 70

94

73 73

59

59
55

49 48 4747
42

4241

4140

4033
29

26
25

22 22
21

20
19 19

18

17 16
15

50

100

1 2 3 4 5

d

th
ro

u
g
h
p
u
t

ops.datatype
1.32
2.32
3.32
4.32
5.32
1.64
2.64
3.64

4.64
5.64
1.128
2.128
3.128
4.128
5.128

(c)

sa_gap<u32>:

6%

sa<u32>:

83%

sa<u64>:

11%

sa_dist<u32, 1>:

35%

sa_dist<u64, 1>:

5%

sa_dist<u32, 2>:

6%

sa<u32>:

19%

sa<u64>:

10%

sa_dist<u32, 1>:

10%

sa<u128>:

13%

sa<u32>:

41%

sa<u64>:

27%

sa_dist<u32, 1>:

28%

sa_dist<u32, 2>:

6%

sa<u32>:

24%

sa<u64>:

10%

sa_dist<u32, 1>:

26%

sa<u32>:

74%

0

25

50

75

100

Prosite Snort SpamAssassin Suricata Yara

Dataset

P
e
rc

e
n
ta

g
e

(d)

Fig. 7. Comparison of the throughput (in MB/s) for (a) ShiftAnd and ShiftAndGap, (b) ShiftAndDist for
distance up to 10, (c) ShiftAndOps for up to distance 5 and 5 other operations, and (d) the kernels executed
by HybridSA on the GPU. Datatypes of 32, 64, 128 and 256 bits are evaluated.

1 1

36

1
1

37

7868

20

1 1

20

12

1

18

1

44

50

2

54

1

10
8

58

3

69

1

1515

2

9

6254

6

1 1

4

229

43 43

233

Hamming Levenshtein Prosite Snort SpamAssassin Suricata Yara

0.5
2
4
8

16
32
64

128
256

Dataset

T
h

ro
u

g
h

p
u

t
 N

o
rm

a
liz

e
d

 t
o

 H
o

tS
ta

rt

Engine
HotStart
HybridSA

HybridSA_opt
Hyperscan

Hyperscan+HotStart
Hyperscan+HotStart_opt

Fig. 8. Comparison of the throughput (in MB/s) with HotStart, HybridSA, HybridSA_opt, Hyperscan, Hyper-
scan+HotStart and Hyperscan+HotStart_opt. All bars are normalized to the throughput of HotStart.

many cold states are active at the same time. In the Yara dataset, most regexes can be supported with
simple kernels such as ShiftAnd<u32> and ShiftAndDist<u32, 1> that only require a couple of
bitwise operations per symbol. Thus, our bitwise algorithms are much more efficient at executing
this class of regexes compared to the classical NFA simulation implemented in HotStart.

HybridSA against HotStart on the GPU. In Table 9, we compare the throughput of the opti-
mized version HybridSA_opt and HotStart over the set of regexes that are executed on the GPU

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 331. Publication date: October 2024.

331:24 Alexis Le Glaunec, Lingkun Kong, and Konstantinos Mamouras

Table 7. Absolute throughput (in MB/s) for HotStart, Hyperscan, Hyperscan+HotStart, Hyper-
scan+HotStart_opt HybridSA and HybridSA_opt.

engine Hamming Levenshtein Prosite Snort SpamAssassin Suricata Yara
HotStart 3 4 24 2 4 2 30
Hyperscan 2 78 88 17 54 12 1300
Hyperscan+HotStart 3 5 29 4 11 4 116
Hyperscan+HotStart_opt 5 78 104 21 56 18 1300
HybridSA 117 268 290 104 216 107 6907
HybridSA_opt 119 310 450 111 253 121 7044

Table 8. Compilation time (ms) for HotStart, Hyperscan, Hyperscan+HotStart, Hyperscan+HotStart_opt and
HybridSA_opt.

engine Hamming Levenshtein Prosite Snort SpamAssassin Suricata Yara

HotStart 1197 558 374 58859 4203 60078 7832
Hyperscan 3140 608 1110 19826 9105 19855 2124
Hyperscan+HotStart 1236 587 670 9296 2702 8883 2023
Hyperscan+HotStart_opt 1776 624 953 18932 7702 22715 2191
HybridSA_opt 1578 359 511 9316 2537 8749 2090

Table 9. Comparison of the absolute throughput (in MB/s) between HybridSA_opt and HotStart for the
portion on regexes that are executed purely on the GPU by HybridSA.

engine Hamming Levenshtein Prosite Snort SpamAssassin Suricata Yara

HotStart 3 4 30 4 11 4 133
HybridSA_opt 120 314 450 110 213 113 7200

by HybridSA_opt. This way, we are able to directly compare directly the two GPU algorithms.
Compared to Table 7, we observe no noticeable throughput improvement for HybridSA_opt. For
HotStart, however, there is a significant performance improvement for all the datasets but Hamming
and Levenshtein. This is because, for regexes with a high level of nondeterminism, the HotStart
algorithm will have to process many more states, resulting in a global slowdown as more active
states induce more work for the threads in HotStart. This is not a problem for HybridSA, as the
performance of the GPU kernels is independent from the input text. Overall, the throughput of
HybridSA_opt over the regexes it executes is still orders of magnitude better than HotStart. Those
results confirm that 1) a hybrid approach is beneficial compared to pure GPU (HotStart performs
better with Hyperscan) and 2) our bit-parallel algorithms provide substantial speedup on the large
portion of regexes (> 75%) that it can execute efficiently.

HybridSA against Hyperscan. We observe that HybridSA_opt consistently outperforms Hyper-
scan across the datasets, between 4× for the Levenshtein dataset and 60× for the Hamming dataset.
For the Levenshtein dataset, Hyperscan performs relatively well compared to HybridSA because the
Aho-Corasick prefiltering can deal effectively with most of the regexes. However, when the number
of matches becomes large, the performance of Hyperscan drops significantly as observed for the
Hamming dataset where HybridSA attains the largest speedup against Hyperscan. On the contrary,
HybridSA can simulate those regular expressions very efficiently, covering all the regexes with
the kernel ShiftAndDist<u32, 9> in the case of the Hamming dataset. For the datasets that have

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 331. Publication date: October 2024.

HybridSA: GPU Acceleration of Multi-pattern Regex Matching using Bit Parallelism 331:25

Hamming Levenshtein Prosite Snort SpamAssassin Suricata Yara

HS+HotStart HybridSA HS+HotStart HybridSA HS+HotStart HybridSA HS+HotStart HybridSA HS+HotStart HybridSA HS+HotStart HybridSA HS+HotStart HybridSA

0

25

50

75

100

Engine

P
e

rc
e

n
ta

g
e

Hardware cpu gpu

Fig. 9. Percentage of regexes that go to the GPU and CPU for the hybrid algorithms HS+HotStart and
HybridSA. HS stands for Hyperscan. For HybridSA, the majority of regexes (> 75%) are executed on the GPU.

many regexes with small distances (see Fig. 4) like Snort and Yara (for the regexes executed on the
GPU), Hyperscan performs relatively well compared to HybridSA because most of the regexes can
be executed with ShiftAnd<u32> and ShiftAndDist<u32, 1>. For Yara and Prosite, we manage
to attain a large throughput improvement from Hybrid_SA thanks to the new ShiftAndGap kernel
because many regexes are of the form that is executed efficiently by the ShiftAndGap kernel. For
Snort, SpamAssassin and Suricata, the throughput improvement is between 4.5× (for SpamAssas-
sin) and 10× (for Suricata). Those datasets contain a large number of regexes and different classes
of regular expressions that can be challenging for our kernels. Compared to Hyperscan which
implements ShiftAndDist, HybridSA provides efficient execution for the classes of regexes that
are supported by ShiftAndOps and ShiftAndGap kernels for datatypes up to 𝑢256.

Hyperscan+HotStart against Hyperscan+HotStart_opt. For all the datasets, we observe that
the HybridSA GPU-CPU split performs worse compared to the 𝑜𝑝𝑡 variant that has a training
step to select the percentage of regexes that are randomly assigned to the GPU or the CPU. The
performance decrease is as high as 10× for the Yara dataset. The reason is that, for HybridSA, the
GPU engine is based upon bit-parallel algorithms that are much more efficient than HotStart. When
we re-use the HybridSA split in Hyperscan+HotStart, we end up with too many regexes placed on
the GPU. In the end, the GPU engine runtime is much longer than its CPU counterpart, resulting
in lower throughput across the datasets. By choosing a percentage of regexes to execute on the
GPU, however, we are able to balance better the CPU and GPU execution time, resulting in much
better throughput overall.

HybridSA against Hyperscan+HotStart_opt. We have implemented a hybrid combination of
Hyperscan and HotStart to compare with our hybrid implementation HybridSA.In this version
of Hyperscan+HotStart, we use a training step to choose the percentage of regexes to execute on
the GPU. After the choice is made, we randomly assign regexes to the CPU or the GPU based on
that percentage. For the Hamming dataset, the performance improvement of the hybrid algorithm
over Hyperscan is about 2× as Hyperscan performs poorly when dealing with many matches.
Compared to HybridSA, Hyperscan+HotStart is still 24× worse for the Hamming dataset. For the
other datasets, the throughput of HotStart is too low in comparison to Hyperscan to provide any
significant improvement. Fig. 9 presents the percentage of regexes that are offloaded to the GPU
for the two hybrid algorithms, HybridSA and Hyperscan+HotStart. We observe that except for the
Hamming dataset, HotStart is marginally used because its throughput is orders of magnitude smaller
than Hyperscan throughput. In comparison, for all the datasets but Yara, at least 75% of regexes
are handled by the GPU engine in the HybridSA algorithm. Those results also demonstrate that
the HybridSA GPU kernels are able to execute efficiently more than 75% of the regexes occurring
in those application datasets. In the case of Yara, the regexes are so simple and the dataset is

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 331. Publication date: October 2024.

331:26 Alexis Le Glaunec, Lingkun Kong, and Konstantinos Mamouras

small enough that it can be executed very efficiently on the CPU. Overall, HybridSA attains a
speedup between 3.9× (for the Levenshtein dataset) and 37× (for the Hamming dataset) compared
to Hyperscan+HotStart. The relatively low speedup for Levenshtein, compared to the other datasets,
is due to a lower percentage of matches which favors both HotStart’s approach with cold states
and the Aho-Corasick prefiltering in Hyperscan. The Snort and Suricata datasets exhibit similar
speedup for HybridSA_opt against Hyperscan+HotStart with a speedup of around 5×.

6 Related Work
Some regex engines provide an interface for multi-pattern matching on CPU, most notably
Hyperscan [Wang et al. 2019], RE2 [RE2 2023] and Grep [Grep 2022]. Hyperscan [Wang et al.
2019] is the state-of-the-art multi-pattern regex matcher for modern CPUs, breaking down regular
expressions into a set of strings and intricate sub-patterns to accelerate regex matching with string
search. Its matching algorithm, like ours, is based on a modified version of the Shift-And algorithm
accelerated with a 128-bit SIMD acceleration. Google’s RE2 [RE2 2023] utilizes an on-the-fly NFA-to-
DFA determinization process, caching states and seamlessly transitioning to NFA simulation when
required. It maintains linear time complexity for many regex patterns, while circumventing specific
constructs prone to excessive backtracking. Both RE2 and Hyperscan provide APIs for matching sets
of regular expressions over an input string. Grep [Grep 2022] uses the Aho-Corasick algorithm [Aho
and Corasick 1975] to perform multi-pattern matching. Besides, Saarikivi et al. (2019) [Saarikivi
et al. 2019] presented the Symbolic Regex Matcher (SRM), which efficiently explores and assesses
different execution paths of a regex using constraint solving and optimization techniques. Based
on Brzozowski derivatives, SRM supports bounded repetition and match extraction, resembling
DFA-based approaches and representing regex matching as a set of symbolic constraints. Sitaridi
et al. [2016] consider SIMD acceleration on Intel CPUs.
There has been some prior works targeting multi-pattern matching on GPU [Avalle et al.

2016; Cascarano et al. 2010; Liu et al. 2020; Vasiliadis et al. 2011; Wang et al. 2011; Yu and Becchi
2013; Zu et al. 2012]. The first algorithm for multi-pattern matching on GPU was iNFAnt [Cascarano
et al. 2010]. It uses shared memory to store the NFA active states and a symbol-first transition
representation to reduce sparsity. iNFAnt employed multi-striding to enhance throughput, at the
cost of higher alphabet and state counts. It was later improved on by [Yu and Becchi 2013] which
proposed optimizations over iNFAnt to avoid exhaustive iteration over character class transitions
and [Avalle et al. 2016] that explored further multi-striding and data compression on GPU to
reduce memory accesses. Zu et al. [2012] present the notion of compatibility for NFA states. Two
NFA states are compatible if they can never be active at the same time. The NFA states are thus
partitioned into “compatible groups”. These groups are used to simplify the access pattern of the
array of active states. More recently, HotStart [Liu et al. 2020] proposed a two-step approach where
the most active states, called hot states, are allocated at the beginning with their own CUDA thread
whereas less active states, called cold states, are dynamically allocated threads when activated at
runtime. The hot states are chosen to be the initial states, based on the assumption that very few
regexes match at the same time. HotStart also introduces a compact data structure to represent NFA
states alongside its transitions to fit inside the GPU registers. Meanwhile, GSpecPal [Wang et al.
2022] emerged as a speculation-centric finite state machine parallelization framework, integrating
diverse speculative parallelization schemes in a latency-sensitive manner. Kargus [Jamshed et al.
2012] implements DFA execution on heterogeneous CPU/GPU hardware, where small DFAs are
offloaded to the GPU. AsyncAP [Liu et al. 2023] is an extension of HotStart-MaC [Liu et al. 2020]
for small datasets that match in parallel at different starting points of the input text. Even though
the work is redundant, it showcases high throughput for datasets that are too small to fully occupy
the GPU. Although it entails higher worst-case time complexity due to multiple reads, empirical

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 331. Publication date: October 2024.

HybridSA: GPU Acceleration of Multi-pattern Regex Matching using Bit Parallelism 331:27

observations on ANMLZoo and AutomataZoo databases support the practicality of this approach,
as the upper bound is rarely reached in practice. [Ge et al. 2024] accelerates the NFA simulation
algorithm on GPU by allowing individual threads to perform more work, effectively getting rid of
the thread-level barrier at each input symbol and improving the data locality. In addition, it uses
memoization to remember the initial states for each input symbol and compressed look-up tables
for transitions.
When it comes tomulti-pattern matching on FPGA and ASIC, [Sidhu and Prasanna 2001]

marked the first practical application of a nondeterministic state machine on programmable logic.
In later years, Yang and Prasanna [2012] put forth a novel and high-performance architecture for
FPGA-based regular expression matching. Their approach involved a modular RE-NFA construction,
where they first parsed regular expressions into a token list and then converted it to a modular
RE-NFA suitable for FPGA implementation using a modified McNaughton-Yamada Algorithm. In
this way, Yang and Prasanna were able to design two types of state update modules, one dedicated
to normal character matching and the other to negated character matching, further optimizing the
FPGA-based matching process. One of the most recent works is Grapefruit [Rahimi et al. 2020].
This FPGA framework for automata processing adopts compares pure BRAM and pure LUT designs,
and focuses on efficient report with signal sharing. In the field of ASIC hardware, Kong et al.
[2022] proposed an area- and energy-efficient hardware for multi-pattern matching that improved
upon CAMA [Huang et al. 2022] and the AP processor [Dlugosch et al. 2014; Wang et al. 2016] to
save area for bounded repetitions with an analysis called counter ambiguity. Wen et al. [2024] have
recently used the model of nondeterministic bit vector automata (NBVA), introduced in [Le Glaunec
et al. 2023], to handle the bounded repetition construct 𝑟 {𝑚,𝑛} more efficiently.

7 Conclusion
In this work, we have investigated the GPU acceleration of multi-pattern regex matching. We have
proposed a heterogeneous approach that partitions the set of patterns into a subset that is matched
on the CPU and a subset that is matched on the GPU. The GPU matching uses a collection of
bit-parallel algorithms (ShiftAnd, ShiftAndDist, ShiftAndGap and ShiftAndOps) for the efficient
simulation of NFAs. We have compared the performance of our approach against state-of-the-art
CPU-based and GPU-based regex engines and observe a speedup of around 3× to 35×.

The GPU acceleration techniques of this work could possibly be used for patterns with lookaround
assertions [Mamouras and Chattopadhyay 2024], as well as for match extraction [Mamouras et al.
2024] (i.e., reporting the location of a match, not just whether a match exists or not).

Acknowledgments
We would like to thank the anonymous reviewers for their constructive comments. We also thank
Angela W. Li for providing valuable feedback. This research was supported in part by the US
National Science Foundation award CCF 2313062.

References
Alfred V. Aho and Margaret J. Corasick. 1975. Efficient String Matching: An Aid to Bibliographic Search. Commun. ACM 18,

6 (1975), 333–340. https://doi.org/10.1145/360825.360855
Matteo Avalle, Fulvio Risso, and Riccardo Sisto. 2016. Scalable Algorithms for NFA Multi-striding and NFA-based Deep

Packet Inspection on GPUs. IEEE/ACM Transactions on Networking 24, 3 (2016), 1704–1717. https://doi.org/10.1109/
TNET.2015.2429918

Ricardo Baeza-Yates and Gaston H. Gonnet. 1992. A New Approach to Text Searching. Commun. ACM 35, 10 (1992), 74–82.
https://doi.org/10.1145/135239.135243

Ezio Bartocci, Jyotirmoy Deshmukh, Alexandre Donzé, Georgios Fainekos, Oded Maler, Dejan Ničković, and Sriram
Sankaranarayanan. 2018. Specification-Based Monitoring of Cyber-Physical Systems: A Survey on Theory, Tools and

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 331. Publication date: October 2024.

https://www.nsf.gov/awardsearch/showAward?AWD_ID=2313062
https://doi.org/10.1145/360825.360855
https://doi.org/10.1109/TNET.2015.2429918
https://doi.org/10.1109/TNET.2015.2429918
https://doi.org/10.1145/135239.135243

331:28 Alexis Le Glaunec, Lingkun Kong, and Konstantinos Mamouras

Applications. In Lectures on Runtime Verification: Introductory and Advanced Topics, Ezio Bartocci and Yliès Falcone (Eds.).
LNCS, Vol. 10457. Springer, Cham, 135–175. https://doi.org/10.1007/978-3-319-75632-5_5

Niccolo’ Cascarano, Pierluigi Rolando, Fulvio Risso, and Riccardo Sisto. 2010. iNFAnt: NFA Pattern Matching on GPGPU
Devices. ACM SIGCOMM Computer Communication Review 40, 5 (2010), 20–26. https://doi.org/10.1145/1880153.1880157

Genome Reference Consortium. 2022. Genome Reference Consortium - Human Genome Overview. https://www.ncbi.nlm.
nih.gov/grc/human Accessed: March 1, 2024.

Paul Dlugosch, Dave Brown, Paul Glendenning, Michael Leventhal, and Harold Noyes. 2014. An Efficient and Scalable
Semiconductor Architecture for Parallel Automata Processing. IEEE Transactions on Parallel and Distributed Systems 25,
12 (2014), 3088–3098. https://doi.org/10.1109/TPDS.2014.8

Tianao Ge, Tong Zhang, and Hongyuan Liu. 2024. ngAP: Non-blocking Large-scale Automata Processing on GPUs. In
Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 1 (La Jolla, CA, USA) (ASPLOS ’24). Association for Computing Machinery, New York, NY, USA, 268–285.
https://doi.org/10.1145/3617232.3624848

Victor Mikhaylovich Glushkov. 1961. The Abstract Theory of Automata. Russian Mathematical Surveys 16, 5 (1961), 1–53.
https://doi.org/10.1070/RM1961v016n05ABEH004112

GNU Grep. 2022. GNU Grep - Global Regular Expression Print. https://www.gnu.org/software/grep/ Accessed: March 11,
2023.

Yi Huang, Zhiyu Chen, Dai Li, and Kaiyuan Yang. 2022. CAMA: Energy and Memory Efficient Automata Processing
in Content-Addressable Memories. In 2022 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, USA, 25–37. https://doi.org/10.1109/HPCA53966.2022.00011

Muhammad Asim Jamshed, Jihyung Lee, Sangwoo Moon, Insu Yun, Deokjin Kim, Sungryoul Lee, Yung Yi, and KyoungSoo
Park. 2012. Kargus: a highly-scalable software-based intrusion detection system. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security (Raleigh, North Carolina, USA) (CCS ’12). Association for Computing
Machinery, New York, NY, USA, 317–328. https://doi.org/10.1145/2382196.2382232

Walter L. Johnson, James H. Porter, Stephanie I. Ackley, and Douglas T. Ross. 1968. Automatic Generation of Efficient Lexical
Processors Using Finite State Techniques. Commun. ACM 11, 12 (1968), 805–813. https://doi.org/10.1145/364175.364185

Stephen Cole Kleene. 1956. Representation of Events in Nerve Nets and Finite Automata. In Automata Studies, Claude E.
Shannon and John McCarthy (Eds.). Number 34 in Annals of Mathematics Studies. Princeton University Press, 3–41.

Lingkun Kong, Qixuan Yu, Agnishom Chattopadhyay, Alexis Le Glaunec, Yi Huang, Konstantinos Mamouras, and Kaiyuan
Yang. 2022. Software-Hardware Codesign for Efficient In-Memory Regular Pattern Matching. In Proceedings of the 43rd
ACM SIGPLAN International Conference on Programming Language Design and Implementation (PLDI 2022). ACM, New
York, NY, USA, 733–748. https://doi.org/10.1145/3519939.3523456

Alexis Le Glaunec, Lingkun Kong, and Konstantinos Mamouras. 2023. Regular Expression Matching Using Bit Vector
Automata. Proceedings of the ACM on Programming Languages 7, OOPSLA1, Article 92 (2023), 30 pages. https:
//doi.org/10.1145/3586044

Hongyuan Liu, Sreepathi Pai, and Adwait Jog. 2020. Why GPUs Are Slow at Executing NFAs and How to Make Them
Faster. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’20). ACM, New York, NY, USA, 251–265. https://doi.org/10.1145/3373376.3378471

Hongyuan Liu, Sreepathi Pai, and Adwait Jog. 2023. Asynchronous Automata Processing on GPUs. Proceedings of the ACM
on Measurement and Analysis of Computing Systems 7, 1, Article 27 (2023), 27 pages. https://doi.org/10.1145/3579453

Konstantinos Mamouras and Agnishom Chattopadhyay. 2024. Efficient Matching of Regular Expressions with Lookaround
Assertions. Proceedings of the ACM on Programming Languages 8, POPL, Article 92 (2024), 31 pages. https://doi.org/10.
1145/3632934

Konstantinos Mamouras, Alexis Le Glaunec, Wu Angela Li, and Agnishom Chattopadhyay. 2024. Static Analysis for
Checking the Disambiguation Robustness of Regular Expressions. Proceedings of the ACM on Programming Languages 8,
PLDI, Article 231 (2024), 25 pages. https://doi.org/10.1145/3656461

Gonzalo Navarro. 2001. NR-grep: A Fast and Flexible Pattern-Matching Tool. Software: Practice and Experience 31, 13 (2001),
1265–1312. https://doi.org/10.1002/spe.411

Gonzalo Navarro and Mathieu Raffinot. 2002. Flexible Pattern Matching in Strings: Practical On-Line Search Algorithms for
Texts and Biological Sequences. Cambridge University Press.

NVidia. 2013a. How to Access Global Memory Efficiently in CUDA C/C++ Kernels. https://developer.nvidia.com/blog/how-
access-global-memory-efficiently-cuda-c-kernels/

NVidia. 2013b. Using Shared Memory in CUDA C/C++. https://developer.nvidia.com/blog/using-shared-memory-cuda-cc/
NVidia. 2024. CUDA C++ Programming Guide: Programming Model. https://docs.nvidia.com/cuda/cuda-c-programming-

guide/index.html#programming-model
Reza Rahimi, Elaheh Sadredini, Mircea Stan, and Kevin Skadron. 2020. Grapefruit: An Open-Source, Full-Stack, and

Customizable Automata Processing on FPGAs. In 2020 IEEE 28th Annual International Symposium on Field-Programmable

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 331. Publication date: October 2024.

https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1145/1880153.1880157
https://www.ncbi.nlm.nih.gov/grc/human
https://www.ncbi.nlm.nih.gov/grc/human
https://doi.org/10.1109/TPDS.2014.8
https://doi.org/10.1145/3617232.3624848
https://doi.org/10.1070/RM1961v016n05ABEH004112
https://www.gnu.org/software/grep/
https://doi.org/10.1109/HPCA53966.2022.00011
https://doi.org/10.1145/2382196.2382232
https://doi.org/10.1145/364175.364185
https://doi.org/10.1145/3519939.3523456
https://doi.org/10.1145/3586044
https://doi.org/10.1145/3586044
https://doi.org/10.1145/3373376.3378471
https://doi.org/10.1145/3579453
https://doi.org/10.1145/3632934
https://doi.org/10.1145/3632934
https://doi.org/10.1145/3656461
https://doi.org/10.1002/spe.411
https://developer.nvidia.com/blog/how-access-global-memory-efficiently-cuda-c-kernels/
https://developer.nvidia.com/blog/how-access-global-memory-efficiently-cuda-c-kernels/
https://developer.nvidia.com/blog/using-shared-memory-cuda-cc/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#programming-model
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#programming-model

HybridSA: GPU Acceleration of Multi-pattern Regex Matching using Bit Parallelism 331:29

Custom Computing Machines (FCCM). IEEE, USA, 138–147. https://doi.org/10.1109/FCCM48280.2020.00027
RE2. 2023. RE2: Google’s regular expression library. Website. https://github.com/google/re2 Accessed: March 11, 2023.
Martin Roesch. 1999. Snort - Lightweight Intrusion Detection for Networks. In Proceedings of the 13th USENIX Conference

on System Administration (Seattle, Washington) (LISA ’99). USENIX Association, USA, 229–238. https://www.usenix.org/
legacy/publications/library/proceedings/lisa99/full_papers/roesch/roesch.pdf

Indranil Roy and Srinivas Aluru. 2016. Discovering Motifs in Biological Sequences Using the Micron Automata Processor.
IEEE/ACM Transactions on Computational Biology and Bioinformatics 13, 1 (2016), 99–111. https://doi.org/10.1109/TCBB.
2015.2430313

Olli Saarikivi, Margus Veanes, Tiki Wan, and Eric Xu. 2019. Symbolic Regex Matcher. In Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2019) (LNCS, Vol. 11427), Tomáš Vojnar and Lijun Zhang (Eds.). Springer,
Cham, 372–378. https://doi.org/10.1007/978-3-030-17462-0_24

Reetinder Sidhu and Viktor K. Prasanna. 2001. Fast Regular Expression Matching Using FPGAs. In The 9th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines (FCCM’01). IEEE, USA, 227–238. https://doi.org/10.
1109/FCCM.2001.22

Christian J. A. Sigrist, Lorenzo Cerutti, Edouard de Castro, Petra S. Langendijk-Genevaux, Virginie Bulliard, Amos Bairoch,
and Nicolas Hulo. 2009. PROSITE, A Protein Domain Database for Functional Characterization and Annotation. Nucleic
Acids Research 38, suppl_1 (2009), D161–D166. https://doi.org/10.1093/nar/gkp885

Evangelia Sitaridi, Orestis Polychroniou, and Kenneth A. Ross. 2016. SIMD-Accelerated Regular Expression Matching. In
Proceedings of the 12th International Workshop on Data Management on New Hardware (DaMoN ’16). ACM, New York, NY,
USA, Article 8, 7 pages. https://doi.org/10.1145/2933349.2933357

Snort. 2024. Snort - Network Intrusion Detection & Prevention System. https://www.snort.org/ Accessed: March 11, 2024.
Apache SpamAssassin. 2024. Apache SpamAssassin. https://spamassassin.apache.org/ Accessed: March 11, 2024.
Suricata. 2024. Suricata - Open Source Intrusion Detection and Prevention Engine. https://suricata.io/ Accessed: March 11,

2024.
The PCRE2 Developers. 2024. Perl-compatible Regular Expressions (revised API: PCRE2). https://pcre2project.github.io/

pcre2/doc/html/index.html.
Ken Thompson. 1968. Programming Techniques: Regular Expression Search Algorithm. Commun. ACM 11, 6 (1968), 419–422.

https://doi.org/10.1145/363347.363387
Giorgos Vasiliadis, Michalis Polychronakis, and Sotiris Ioannidis. 2011. Parallelization and characterization of pattern

matching using GPUs. In Proceedings of the 2011 IEEE International Symposium on Workload Characterization (IISWC ’11).
IEEE Computer Society, USA, 216–225. https://doi.org/10.1109/IISWC.2011.6114181

Jack Wadden, Tommy Tracy, Elaheh Sadredini, Lingxi Wu, Chunkun Bo, Jesse Du, Yizhou Wei, Jeffrey Udall, Matthew
Wallace, Mircea Stan, and Kevin Skadron. 2018. AutomataZoo: A Modern Automata Processing Benchmark Suite. In
2018 IEEE International Symposium on Workload Characterization (IISWC). IEEE, New York, NY, USA, 13–24. https:
//doi.org/10.1109/IISWC.2018.8573482

Ke Wang, Kevin Angstadt, Chunkun Bo, Nathan Brunelle, Elaheh Sadredini, Tommy Tracy, Jack Wadden, Mircea Stan,
and Kevin Skadron. 2016. An Overview of Micron’s Automata Processor. In Proceedings of the Eleventh IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Synthesis (CODES ’16). ACM, New York, NY, USA,
Article 14, 3 pages. https://doi.org/10.1145/2968456.2976763

Lei Wang, Shuhui Chen, Yong Tang, and Jinshu Su. 2011. Gregex: GPU Based High Speed Regular Expression Matching
Engine. In Proceedings of the 2011 Fifth International Conference on Innovative Mobile and Internet Services in Ubiquitous
Computing (IMIS ’11). IEEE Computer Society, USA, 366–370. https://doi.org/10.1109/IMIS.2011.107

Xiang Wang, Yang Hong, Harry Chang, KyoungSoo Park, Geoff Langdale, Jiayu Hu, and Heqing Zhu. 2019. Hyperscan:
A Fast Multi-Pattern Regex Matcher for Modern CPUs. In 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’19). USENIX Association, Boston, MA, 631–648. https://www.usenix.org/conference/nsdi19/
presentation/wang-xiang

Yuguang Wang, Robbie Watling, Junqiao Qiu, and Zhenlin Wang. 2022. GSpecPal: Speculation-Centric Finite State Machine
Parallelization on GPUs. In 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, USA,
481–491. https://doi.org/10.1109/IPDPS53621.2022.00053

Ziyuan Wen, Lingkun Kong, Alexis Le Glaunec, Konstantinos Mamouras, and Kaiyuan Yang. 2024. BVAP: Energy and
Memory Efficient Automata Processing for Regular Expressions. In Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, Volume 2 (ASPLOS ’24). ACM, New York, NY,
USA, 151–166. https://doi.org/10.1145/3620665.3640412

Sun Wu and Udi Manber. 1992. Fast Text Searching: Allowing Errors. Commun. ACM 35, 10 (oct 1992), 83–91. https:
//doi.org/10.1145/135239.135244

Yi-Hua Yang and Viktor K. Prasanna. 2012. High-Performance and Compact Architecture for Regular Expression Matching
on FPGA. IEEE Trans. Comput. 61, 7 (2012), 1013–1025. https://doi.org/10.1109/TC.2011.129

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 331. Publication date: October 2024.

https://doi.org/10.1109/FCCM48280.2020.00027
https://github.com/google/re2
https://www.usenix.org/legacy/publications/library/proceedings/lisa99/full_papers/roesch/roesch.pdf
https://www.usenix.org/legacy/publications/library/proceedings/lisa99/full_papers/roesch/roesch.pdf
https://doi.org/10.1109/TCBB.2015.2430313
https://doi.org/10.1109/TCBB.2015.2430313
https://doi.org/10.1007/978-3-030-17462-0_24
https://doi.org/10.1109/FCCM.2001.22
https://doi.org/10.1109/FCCM.2001.22
https://doi.org/10.1093/nar/gkp885
https://doi.org/10.1145/2933349.2933357
https://www.snort.org/
https://spamassassin.apache.org/
https://suricata.io/
https://pcre2project.github.io/pcre2/doc/html/index.html
https://pcre2project.github.io/pcre2/doc/html/index.html
https://doi.org/10.1145/363347.363387
https://doi.org/10.1109/IISWC.2011.6114181
https://doi.org/10.1109/IISWC.2018.8573482
https://doi.org/10.1109/IISWC.2018.8573482
https://doi.org/10.1145/2968456.2976763
https://doi.org/10.1109/IMIS.2011.107
https://www.usenix.org/conference/nsdi19/presentation/wang-xiang
https://www.usenix.org/conference/nsdi19/presentation/wang-xiang
https://doi.org/10.1109/IPDPS53621.2022.00053
https://doi.org/10.1145/3620665.3640412
https://doi.org/10.1145/135239.135244
https://doi.org/10.1145/135239.135244
https://doi.org/10.1109/TC.2011.129

331:30 Alexis Le Glaunec, Lingkun Kong, and Konstantinos Mamouras

Yara. 2024. ClamAV - The pattern matching swiss knife for malware researchers. Website. https://virustotal.github.io/yara/
Accessed: August 10, 2024.

Fang Yu, Zhifeng Chen, Yanlei Diao, T. V. Lakshman, and Randy H. Katz. 2006. Fast and Memory-Efficient Regular Expression
Matching for Deep Packet Inspection. In Proceedings of the 2006 ACM/IEEE Symposium on Architecture for Networking
and Communications Systems (ANCS ’06). ACM, New York, NY, USA, 93–102. https://doi.org/10.1145/1185347.1185360

Xiaodong Yu and Michela Becchi. 2013. GPU Acceleration of Regular Expression Matching for Large Datasets: Exploring
the Implementation Space. In Proceedings of the ACM International Conference on Computing Frontiers (CF ’13). ACM,
New York, NY, USA, Article 18, 10 pages. https://doi.org/10.1145/2482767.2482791

Yuan Zu, Ming Yang, Zhonghu Xu, Lin Wang, Xin Tian, Kunyang Peng, and Qunfeng Dong. 2012. GPU-based NFA
Implementation for Memory Efficient High Speed Regular Expression Matching. In Proceedings of the 17th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (New Orleans, Louisiana, USA) (PPoPP ’12). ACM, New
York, NY, USA, 129–140. https://doi.org/10.1145/2145816.2145833

Received 2024-04-06; accepted 2024-08-18

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 331. Publication date: October 2024.

https://virustotal.github.io/yara/
https://doi.org/10.1145/1185347.1185360
https://doi.org/10.1145/2482767.2482791
https://doi.org/10.1145/2145816.2145833

	Abstract
	1 Introduction
	2 Preliminaries
	3 Overview of HybridSA
	3.1 Shift-And Algorithm
	3.2 Shift-And on a GPU
	3.3 Extending Shift-And

	4 Compilation and Optimizations
	5 Experiments
	5.1 Classes of Regexes on the GPU
	5.2 Performance Results

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

