
BVAP: Energy and Memory Efficient Automata
Processing for Regular Expressions with Bounded

Repetitions
Ziyuan Wen*
zw75@rice.edu
Rice University

Houston, Texas, USA

Lingkun Kong*
klk@rice.edu
Rice University

Houston, Texas, USA

Alexis Le Glaunec
afl5@rice.edu
Rice University

Houston, Texas, USA

Konstantinos Mamouras
mamouras@rice.edu

Rice University
Houston, Texas, USA

Kaiyuan Yang
kyang@rice.edu
Rice University

Houston, Texas, USA

Abstract
Regular pattern matching is pervasive in applications such
as text processing, malware detection, network security, and
bioinformatics. Recent studies have demonstrated special-
ized in-memory automata processors with superior energy
and memory efficiencies than existing computing platforms.
Yet, they lack efficient support for the construct of bounded
repetition that is widely used in regular expressions (regexes).
This paper presents BVAP, a software-hardware co-designed
in-memory Bit Vector Automata Processor. It is enabled by
a novel theoretical model called Action-Homogeneous Non-
deterministic Bit Vector Automata (AH-NBVA), its efficient
hardware implementation, and a compiler that translates
regexes into hardware configurations. BVAP is evaluated
with a cycle-accurate simulator in a 28nm CMOS process,
achieving 67-95% higher energy efficiency and 42-68% lower
area, compared to state-of-the-art automata processors (CA,
eAP, and CAMA), across a set of real-world benchmarks.

CCS Concepts: • Theory of computation→ Regular lan-
guages; • Hardware→ Application specific processors;
• Computer systems organization→ Architectures.

Keywords: Action-Homogeneous Nondeterministic Bit Vec-
tor Automata, Automata Processor, energy efficiency

* These authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0385-0/24/04. . . $15.00
https://doi.org/10.1145/3620665.3640412

ACM Reference Format:
Ziyuan Wen*, Lingkun Kong*, Alexis Le Glaunec, Konstantinos
Mamouras, and Kaiyuan Yang. 2024. BVAP: Energy and Memory Ef-
ficient Automata Processing for Regular Expressions with Bounded
Repetitions . In 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
2 (ASPLOS ’24), April 27-May 1, 2024, La Jolla, CA, USA. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3620665.3640412

1 Introduction
Regular pattern matching is useful in many application do-
mains, including network security [49] and bioinformatics
[4, 29]. Various algorithms have been developed based on
nondeterministic finite automata (NFAs) or deterministic
finite automata (DFAs). NFA-based regular pattern matching
is widely adopted for hardware acceleration [8, 10, 16, 26, 30,
31, 37], as it combines the memory efficiency of NFAs (over
DFAs) and leverages the inherent parallelism of hardware to
efficiently simulate NFA execution.

Classical regular expressions can be translated into NFAs
whose state space is linear in the size of the expression. How-
ever, regexes that arise in practice use the construct 𝑟 {𝑚,𝑛},
called bounded repetition, which describes the repetition of
the pattern 𝑟 from𝑚 to 𝑛 times. The naïve approach to deal
with bounded repetition involves unfolding it. For example,
the regex 𝑟 {𝑛, 𝑛} is rewritten into the 𝑛-fold concatenation
𝑟𝑛 = 𝑟 ·𝑟 · · · 𝑟 . More generally, the bounded repetition 𝑟 {𝑚,𝑛}
is equivalent to 𝑟 {𝑚,𝑚} ·𝑟 {0, 𝑛−𝑚} and can therefore be un-
folded into 𝑟𝑚 · (𝑟 ?)𝑛−𝑚 , where 𝑟 ? either matches the empty
string or the pattern 𝑟 . Unfolding 𝑟 {𝑚,𝑛} increases the size
of the pattern by a factor of Θ(𝑛). This increase can be sub-
stantial when the repetition bound 𝑛 grows large. Due to
the succinct encoding of repetition bounds (using decimal
notation), the size of the representation of the counting oper-
ator {𝑚,𝑛} isΘ(log𝑚+ log𝑛), which is the same asΘ(log𝑛)
because𝑚 ≤ 𝑛. Therefore, regexes with bounded repetition
can be exponentially more succinct than classical regexes.
Bounded repetition is ubiquitous in practical use cases of

151

https://doi.org/10.1145/3620665.3640412
https://doi.org/10.1145/3620665.3640412
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3620665.3640412&domain=pdf&date_stamp=2024-04-27

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Z. Wen, L. Kong, A. L. Glaunec, K. Mamouras, and K. Yang

regexes. Over the diverse collection of datasets that we con-
sider, bounded repetition is found in 37% of the regexes and
they account for 85% of all NFA states (after unfolding and
regex-to-NFA translation).

To address the challenges raised by the widespread use of
bounded repetition, we propose a novel approach that is not
based on NFAs, but rather on automata models that represent
counting in a more succinct way. In NFAs, each transition
𝑞 →𝜎 𝑞′ is annotated with a character class 𝜎 (a subset of
letters) and is enabled if the source state 𝑞 is active and the
current letter belongs to 𝜎 . We draw inspiration from the
classical model of nondeterministic counter automata (NCAs)
[11], where the states are extended with counters that can
keep track of the number of repetitions. The regex .*a.{100}

(in PCRE notation) can be represented as an NFA with 102
states by unfolding the repetition .{100} . Alternatively, it
can be encoded with the following NCA that has three states:

NCA for
.*a.{100}

𝑞0 𝑞1 𝑞2 : 𝑥
.

a . / 𝑥 B 1

. , 𝑥 < 𝑛 / 𝑥++

𝑥 = 𝑛

The NCA has as many states as the number of character
classes that appear in the regex. It uses the counter register
𝑥 to keep track of the number of repetitions, so there is only
one control state for the bounded repetition .{100} . In NCAs,
a transition has the form 𝑞 →𝜎,𝜑/𝜗 𝑞′, where 𝑞 is the source
state, 𝑞′ is the destination state, 𝜎 is a character class, 𝜑 is a
predicate over the counter, and 𝜗 describes how to update
the counter. NCA execution can be highly nondeterministic.
Generally, it may require several different counter values
for the same control state. This means that NCA simulation
requires maintaining sets of counter values (not just a single
value) at each counting control state.

The main idea of this work is the use of the model called
Nondeterministic Bit VectorAutomata (NBVAs) [18]. These
automata enable efficient support for bounded repetition be-
cause they can encode the computation of NCAs in a way
that is amenable to efficient execution on hardware. As men-
tioned earlier, NCA execution requires maintaining a set 𝑆 of
active counter values at a control state𝑞. If𝑞 corresponds to a
bounded repetition {𝑚,𝑛}, then 𝑆 is a subset of the bounded
set {1, 2, . . . , 𝑛} of possible counter values. A bit vector 𝑣
with indexes 1, 2, . . . , 𝑛 can represent 𝑆 in the following way:
𝑣 [𝑖] = 1 if 𝑖 ∈ 𝑆 and 𝑣 [𝑖] = 0 if 𝑖 ∉ 𝑆 . One can also think of 𝑣
as the characteristic function of 𝑆 . The following automaton
corresponds to the NBVA for regex .*.{100} :

NBVA for
.*a.{100}

𝑞0 𝑞1 𝑞2 : 𝑥
.

a . / 𝑣 · [1, 0, . . . , 0]

. / shft(𝑣)

𝑣 [𝑛] = 1

We note that the topology of the NBVA is the same as that of
the NCA shown earlier. So, the size of the NBVA’s state space
is linear in the size of the regex (because there is one state
for each character class of the regex). In NBVAs, each control
state carries a bit vector (BV) of some fixed size, and each

transition 𝑞 →𝜎/𝜗 𝑞′ is annotated with a character class 𝜎
and a bit vector operation 𝜗 . The operation 𝜗 transforms the
BV of 𝑞 into a BV for 𝑞′. If many transitions with destination
𝑞′ are enabled, the BV for 𝑞′ is the bitwise OR of all BVs
generated by the individual transitions. The use of bitwise
OR in the NBVA corresponds to the union of sets of counter
values in the corresponding NCA: if 𝑣1 and 𝑣2 are the bit
vectors for the sets 𝑆1 and 𝑆2 respectively, then 𝑣1 |𝑣2 is the
bit vector for 𝑆1 ∪ 𝑆2 (we use | as notation for bitwise OR).
According to the previous discussion, the NBVA for a

bounded repetition 𝑟 {𝑚,𝑛} is similar to the NFA for 𝑟 , but
each control state has a BV of size 𝑛. So, the main succinct-
ness property is that a regex with bounded repetitions can be
translated into anNBVAwhose state space is linear in the size
of the regex. To enable an efficient hardware implementation,
we show that each NBVA can be equivalently transformed so
that all incoming transitions for a state are annotated with
the same BV operation (“action”). We call such automata
Action-Homogeneous NBVAs or AH-NBVAs. We establish
that a small set of simple BV operations, all of which admit
an efficient hardware implementation, suffice for represent-
ing regexes. This gives rise to a method for pattern matching
that retains all practical benefits of NFAs while avoiding a
blowup of the state space due to bounded repetition.
Co-designed with AH-NBVA, BVAP extends a state-of-

the-art, in-memory NFA accelerator with bit vector modules
(BVM) to execute bit vector processing at greatly reduced
area and energy overheads. We adopt one of the latest de-
signs, CAMA [16], as the baseline, but the proposed approach
can be applied to other alternatives (see §2). BVMs support
the bit-vector-processing phase of AH-NBVA with high pro-
grammability using a custom instruction set. BVM is custom-
designed from the transistor level to achieve the desired
functionalities using SRAMs and tiny peripheral circuits. On
top of BVM, we build and optimize the entire architecture
of BVAP, including the scheduling, control, I/O, and various
reconfigurability to offer application-specific optimizations.

Ourmain contributions are the following:
(1) We have designed BVAP, the first energy and area

efficient automata processor for regexes with bounded rep-
etitions. BVAP is optimized across the circuit, architecture,
and algorithms, leading to high energy efficiency and low
memory usage while maintaining high programmability.

(2) We propose a novel method to transform NBVA into
Action-Homogeneous NBVA, a more convenient representa-
tion for designing and programming hardware.

(3) We have a custom-designed Bit Vector Module (BVM)
for efficient yet programmable bit vector processing and its
integration with in-memory automata processors.

(4) We have developed a regex-to-hardware compiler for
high-level programming of the hardware. This compiler im-
plements the action-homogeneous transformation of NBVAs
and translates the source regexes into configurations used
to program BVAP.

152

BVAP: Energy and Memory Efficient Automata Processing for Regular Expressions ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

(5) BVAP is evaluatedwith the 28nmCMOS process across
seven real-world benchmarks. Compared with the state-of-
the-art designs, BVAP reduces energy by 67%, 95%, and 94%
over CAMA, CA, and eAP, while saving more than 30% of
area. BVAP also supports a streaming input mode, BVAP-
S, which achieves a constant but 67% less throughput and
consumes 39% less energy due to lower voltage.

2 Preliminaries
Regular expressions or regexes are a widely used formalism
for describing regular patterns. For a finite alphabet Σ, clas-
sical regexes over Σ are given by the grammar 𝑟 ::= 𝜀 | 𝜎 |
(𝑟|𝑟) | 𝑟 ·𝑟 | 𝑟∗, where 𝜎 ⊆ Σ is a predicate over the alphabet
called a character class. The predicate Σ contains all symbols
in the alphabet, which is similar to the notation . in PCRE-
style syntax [25]. We write 𝑎 for the singleton predicate
{𝑎} ⊆ Σ and [𝑎1 . . . 𝑎𝑛] for the predicate {𝑎1, . . . , 𝑎𝑛} ⊆ Σ.
The grammar of regexes is often extended with more fea-
tures for convenience and succinctness: 𝑟 ? indicates that the
pattern 𝑟 is optional and 𝑟+ describes the repetition of 𝑟 at
least once. Bounded repetition (also called counting), written
as 𝑟 {𝑚,𝑛}, describes the repetition of 𝑟 from𝑚 to 𝑛 times.
We say that𝑚 and 𝑛 are the lower and upper bounds of the
bounded repetition. The pattern 𝑟 {𝑚,𝑛} can be translated
using concatenation and ? but is exponentially more suc-
cinct. The notation 𝑟 {𝑛} is an abbreviation for 𝑟 {𝑛, 𝑛}. The
abbreviation 𝑟 {𝑛, } = 𝑟 {𝑛}𝑟∗ describes the repetition of 𝑟 at
least 𝑛 times. The naïve approach for dealing with bounded
repetition is to unfold it. For example, 𝑟 {𝑛} is unfolded into
𝑟 · 𝑟 · · · 𝑟 (𝑛-fold concatenation) and results in an NFA of size
linear in 𝑛 (and therefore can produce a DFA of size exponen-
tial in 𝑛). A regex can be converted to an NFA that recognizes
the same language using the construction of Thompson [40]
or Glushkov [13, 14]. We adopt the latter because it results in
𝜀-free automata that are also homogeneous, i.e., all incoming
transitions of a state are labeled with the same character
class. Let Σ be a finite alphabet. A Glushkov NFA or GNFA
with input alphabet Σ is a tuple A = (𝑄, 𝐿,Δ, 𝐼 , 𝐹), where 𝑄
is a finite set of (control) states, 𝐿 : 𝑄 → P(Σ) is a function
that maps each state to a character class, Δ : 𝑄 → P(𝑄) is
the transition relation, 𝐼 ⊆ 𝑄 is the set of initial states, and
𝐹 ⊆ 𝑄 is the set of final states.

Example 2.1. Consider the regex Σ∗𝜎1 (𝜎2𝜎3 |𝜎4)∗𝜎5, where
𝜎1, 𝜎2, . . . , 𝜎5 are character classes. The following GNFA rec-
ognizes the language of this regex:

𝑞0 𝑞1 𝑞2

𝑞4

𝑞3 𝑞5

Σ

𝜎1 𝜎2 𝜎3
𝜎2

𝜎5

𝜎4
𝜎5𝜎4

𝜎4𝜎2

This homogeneous GNFA has six control states; 𝑞0 is the
initial state and 𝑞5 is the final state. Edges that lead to the
same state are labeled with the same character class.

Nondeterministic counter automata (NCAs) [17, 42] ex-
tend NFAs with counter registers. In an NCA, a computation
involves not only transitions between control states but also
the use of a finite number of registers that hold nonnegative
integers. NCA is a natural execution model for regexes with
bounded repetitions. Nondeterministic bit vector automata
(NBVAs) [18] are expressively equivalent to NCAs if the
counters are bounded. The configuration of the NBVA speci-
fies for each control state 𝑞 a bit vector to represent the set
of counter values that are on the control state 𝑞.

We fix an infinite set CReg of counter registers or, simply,
counters. A nondeterministic counter automaton (NCA)
with input alphabet Σ is a tuple A = (𝑄, 𝑅,Δ, 𝐼 , 𝐹), where
𝑄 is a finite set of (control) states and 𝑅 : 𝑄 → P(CReg) is
a function that maps each state to a finite set of counters.
The transition relation Δ contains finitely many transitions
of the form (𝑝, 𝜎, 𝜑, 𝑞, 𝜗), where 𝑝 is the source state, 𝜎 ⊆
Σ is a predicate over the alphabet, 𝜑 ⊆ (𝑅(𝑝) → N) is a
predicate over 𝑅(𝑝)-valuations, 𝑞 is the destination state, and
𝜗 : (𝑅(𝑝) → N) → (𝑅(𝑞) → N). The initialization function
𝐼 specifies the set 𝐼 (𝑞) ⊆ 𝑅(𝑞) → N of initial valuations
for each state 𝑞. The finalization function 𝐹 specifies the set
𝐹 (𝑞) ⊆ 𝑅(𝑞) → N of final valuations for each state 𝑞.

Some states in an NCA may not have any counter at all. In
a transition (𝑝, 𝜎, 𝜑, 𝑞, 𝜗), we will call the predicate 𝜑 a guard
because it may restrict a transition based on the values of the
counters, and we will call the function 𝜗 an assignment as
it describes how to assign counter values to the destination
state given the counter values in the source state.

A nondeterministic bit vector automaton (NBVA) is a
tuple (𝑄,𝑤,Δ, 𝐼 , 𝐹), where 𝑄 is a finite set of (control) states,
and𝑤 : 𝑄 → {1, 2, . . .} is a function that maps each state to
a strictly positive integer. The transition relation Δ contains
finitely many transitions of the form (𝑝, 𝜎, 𝑞, 𝜗), where 𝑝
is the source state, 𝜎 ⊆ Σ is a predicate over the alphabet,
𝑞 is the destination state, and 𝜗 : B𝑤 (𝑝) → B𝑤 (𝑞) . The
initialization function 𝐼 specifies an initial vector 𝐼 (𝑞) : B𝑤 (𝑞)

for each state 𝑞, and the finalization function 𝐹 specifies a
function 𝐹 (𝑞) : B𝑤 (𝑞) → B for each state𝑞. A state𝑞 is initial
if 𝐼 (𝑞) ≠ 0𝑤 (𝑞) , where 0𝑤 (𝑞) is the zero vector of length𝑤 (𝑞).
A state 𝑞 is final if 𝐹 (𝑞) (𝑣) = 1 for some 𝑣 ∈ B𝑤 (𝑞) .

Example 2.2. Consider the regex 𝑟 = Σ∗𝜎1𝜎2{𝑛} with
𝑛 ≥ 1, where 𝜎1 and 𝜎2 are character classes. The following
NCA and NBVA recognize the language of 𝑟 :

NCA : 𝑞0 𝑞1 𝑞2 : 𝑥

Σ

𝜎1 𝜎2 / 𝑥 B 1

𝜎2, 𝑥 < 𝑛 / 𝑥++

𝑥 = 𝑛

NBVA : 𝑞0 𝑞1 𝑞2 : 𝑛

Σ

𝜎1 𝜎2 / 𝑣 · [1, 0, · · · , 0]

𝜎2 / shft(𝑣)

𝑣 [𝑛] = 1

The NCA has three states. We write 𝑞2 : 𝑥 to indicate that
𝑞2 has a counter register 𝑥 . Notice that 𝑞0 and 𝑞1 have no
annotationwith counters, whichmeans they have no counter.

153

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Z. Wen, L. Kong, A. L. Glaunec, K. Mamouras, and K. Yang

NCA : 𝑞0 𝑞1 𝑞2 : 𝑥

Σ

𝑎 Σ / 𝑥 B 1

Σ, 𝑥 < 3 / 𝑥++

𝑥 = 3

NBVA : 𝑞0 𝑞1 𝑞2 : 3
Σ

𝑎 Σ / 𝑣 · [1, 0, 0]

Σ / shft(𝑣)

𝑣 [3] = 1

input NCA configuration NBVA configuration output
𝑞0 𝑞0 : 1, 𝑞1 : 0, 𝑞2 : [0, 0, 0] 0

𝑏 𝑞0 𝑞0 : 1, 𝑞1 : 0, 𝑞2 : [0, 0, 0] 0
𝑎 𝑞0, 𝑞1 𝑞0 : 1, 𝑞1 : 1, 𝑞2 : [0, 0, 0] 0
𝑏 𝑞0, (𝑞2, 1) 𝑞0 : 1, 𝑞1 : 0, 𝑞2 : [1, 0, 0] 0
𝑎 𝑞0, 𝑞1, (𝑞2, 2) 𝑞0 : 1, 𝑞1 : 1, 𝑞2 : [0, 1, 0] 0
𝑎 𝑞0, 𝑞1, (𝑞2, 1), (𝑞2, 3) 𝑞0 : 1, 𝑞1 : 1, 𝑞2 : [1, 0, 1] 1
𝑏 𝑞0, (𝑞2, 1), (𝑞2, 2) 𝑞0 : 1, 𝑞1 : 0, 𝑞2 : [1, 1, 0] 0
𝑎 𝑞0, 𝑞1, (𝑞2, 2), (𝑞2, 3) 𝑞0 : 1, 𝑞1 : 1, 𝑞2 : [0, 1, 1] 1
𝑎 𝑞0, 𝑞1, (𝑞2, 1), (𝑞2, 3) 𝑞0 : 1, 𝑞1 : 1, 𝑞2 : [1, 0, 1] 1
𝑎 𝑞0, 𝑞1, (𝑞2, 1), (𝑞2, 2) 𝑞0 : 1, 𝑞1 : 1, 𝑞2 : [1, 1, 0] 0

Figure 1. Execution of NCA and NBVA for regex Σ∗𝑎Σ{3}.

We annotate each edge 𝑝 → 𝑞 with an expression of the form
𝜎, 𝜑 / 𝜗 , where 𝜎 is a character class, 𝜑 is a guard over 𝑝’s
counters, and 𝜗 is an assignment for the counters of 𝑞 using
𝑝’s counters. If the guard 𝜑 is omitted, then it is always
true. The assignment 𝜗 is omitted only when the counters
retain the values from the previous state (i.e., “𝑥 B 𝑥”). We
write “𝑥 = 𝑛” for the guard that checks whether the value of
counter 𝑥 is equal to 𝑛, and we write “𝑥 B 𝑛” to denote the
assignment of the value 𝑛 to 𝑥 . We use double circle notation
to indicate that a state is final (see 𝑞2). An arrow emanating
from a final state is annotated with a predicate (see 𝑥 = 𝑛 for
𝑞2) over counter valuations. A match is reported if the final
state is active and the counter value satisfies the predicate.
For NBVA, we write “𝑞2 : 𝑛” to indicate that 𝑤 (𝑞2) = 𝑛,

i.e., 𝑞2 carries a bit vector of size 𝑛. States 𝑞0 and 𝑞1 have no
annotation, i.e., they have no bit vector. We annotate each
edge 𝑝 → 𝑞 with an expression of the form 𝜎 / 𝜗 , where 𝜎 is
a predicate over Σ, and 𝜗 is a function for computing the bit
vector of 𝑞 using the bit vector of 𝑝 . We use 𝑣 as a symbol
that represents the bit vector of 𝑝 . As further explanation:
(1) We write [1, 0, . . . , 0] to denote the bit vector that is zero
everywhere, except for position 1, where it is equal to 1. (2)
We write “𝑣 [𝑛] = 1” to denote the function of type B𝑛 → B
that checks whether the value of 𝑣 at the 𝑛-th position is
equal to 1. (3) We write “shft(𝑣)” to denote the function of
type B𝑛 → B𝑛 that shifts a bit vector by one position. More
formally, the shift operation is defined as: shft(𝑣) [1] = 0 and
shft(𝑣) [𝑖] = 𝑣 [𝑖 − 1] for every 𝑖 = 2, . . . , 𝑛. (4) We use double
circle notation to indicate that a state is final (see state 𝑞2).
An arrow emanating from a final state 𝑞 is annotated with a
description of the function 𝐹 (𝑞) : B𝑤 (𝑞) → B.
Figure 1 shows the execution of the NCA and NBVA for

Σ∗𝑎Σ{3}. With the provided input sequence, the control state

𝑞2 may carry several counter values, i.e., its bit vector has
several bits set to ‘1’. In NBVAs, when a state 𝑞 has several
incoming transitions that produce several bit vectors for 𝑞,
the bit vector for 𝑞 becomes the bitwise OR over them.
During NCA simulation, an NCA operation 𝑓 (e.g., 𝑥 <

𝑛 /𝑥++ on a loop backedge) is applied to all values of 𝑆 to ob-
tain 𝑓 (𝑆) = {𝑓 (𝑐) | 𝑐 ∈ 𝑆}. A consequence of this is that 𝑓 (on
sets) commutes with union: 𝑓 (𝑆1 ∪ 𝑆2) = 𝑓 (𝑆1) ∪ 𝑓 (𝑆2). Sup-
pose that 𝑔 is (e.g., “shift”) the corresponding operation on
bit vectors. Then, it should hold that 𝑔(𝑣1 |𝑣2) = 𝑔(𝑣1) |𝑔(𝑣2),
where 𝑣1, 𝑣2 are the bit vectors for 𝑆1, 𝑆2 respectively. This
equation says that the operation 𝑔 on bit vectors is linear
(with respect to bitwise OR). NBVAs with non-linear opera-
tions do not have an immediate correspondence to NCAs.

In-memory Automata Processor. A plethora of recent
automata processors based on in-memory computing have
shown significant promise for efficient regex matching. AP
[10] achieves more than 10× better performance than ex-
isting CPU [19] and GPU [5] architecture and accelerator
XeonPhi. CA [37] proposes an 8-transistor (8T) Fully con-
nected CrossBar (FCB) for routing and aggregation (logic OR)
of active states. eAP [31] creates Reduced CrossBar (RCB)
exploiting the sparsity of the switch network to decrease the
area. Impala [30] and CAMA [16] made critical improve-
ments to AP by proposing efficient encoding schemes to
reduce memory usage. CAMA further uses content address-
able memory (CAM) to reduce energy and memory usage.
These designs typically adopt a two-phase architecture: a
state-matching phase for identifying the currently acti-
vated states and a state-transition phase for detecting
available states in the next cycle. They use STEs to repre-
sent states, where each STE carries a predicate such that
it will fire a signal ‘1’ (i.e., it is matched) if an input sym-
bol satisfies this predicate. The exact operation of AP-style
processors is detailed in §3 and Figure 3(a), using CAMA as
an example. AP-style processors support regexes found in
many real-world applications [44, 45] but provide limited
and inefficient support for regexes with bounded repetitions.

3 Design Principle of BVAP
In this section, we present the design principle of BVAP. We
first discuss how current ASIC architectures such as AP and
CAMA struggle to simulate regexes with bounded repetition
efficiently. Next, we propose a naïve solution that integrates
bit vectors into existing frameworks to minimize the number
of STEs required for regex matching. We further introduce
our BVAP solution, which substantially reduces the hardware
resources compared to the naïve solution.

Existing Solution with Unfolding. As a motivating ex-
ample, let us consider the matching of regex 𝑎(Σ𝑎){3}𝑏. Re-
call 𝑎 and 𝑏 are predicates that match input symbols 𝑎 and 𝑏
respectively, while Σ matches any symbol. Fig. 2(a) shows

154

BVAP: Energy and Memory Efficient Automata Processing for Regular Expressions ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Table 1. Sample execution of the naïve design in Fig. 3(b), where (1) the column STE𝑖 contains a bit indicating whether STE𝑖 is
active (‘1’ means active), (2) bv𝑖→ is the initial value of bit vector in PEs associated to STE𝑖 (it will be all ‘0’s if STE𝑖 is inactive),
(2) fields set1, shift, copy, and r(3) show the value of bit vectors on the corresponding crossing points after the operation,
(3)→bv𝑖 is the updated value of bit vector in bv𝑖 .

input STE1 STE2 STE3 STE4 bv1→ bv2→ bv3→ bv4→ set1 shift copy r(3) →bv2 →bv3 →bv4

𝑎 1 0 0 0 [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] [1, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] [1, 0, 0] [0, 0, 0] [0, 0, 0]
𝑏 0 1 0 0 [0, 0, 0] [1, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] [1, 0, 0] [0, 0, 0] [0, 0, 0] [1, 0, 0] [0, 0, 0]
𝑎 1 0 1 0 [0, 0, 0] [0, 0, 0] [1, 0, 0] [0, 0, 0] [1, 0, 0] [0, 1, 0] [0, 0, 0] [0, 0, 0] [1, 1, 0] [0, 0, 0] [0, 0, 0]
𝑎 1 1 0 1 [0, 0, 0] [1, 1, 0] [0, 0, 0] [0, 0, 0] [1, 0, 0] [0, 0, 0] [1, 1, 0] [0, 0, 0] [1, 0, 0] [1, 1, 0] [0, 0, 0]
𝑎 1 1 1 0 [0, 0, 0] [1, 0, 0] [1, 1, 0] [0, 0, 0] [1, 0, 0] [0, 1, 1] [1, 0, 0] [0, 0, 0] [1, 1, 1] [1, 0, 0] [0, 0, 0]
𝑏 0 1 0 1 [0, 0, 0] [1, 1, 1] [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] [1, 1, 1] [0, 0, 0] [0, 0, 0] [1, 1, 1] [0, 0, 0]
𝑎 1 0 1 0 [0, 0, 0] [0, 0, 0] [1, 1, 1] [0, 0, 0] [1, 0, 0] [0, 1, 1] [0, 0, 0] [1, 1, 1] [1, 1, 1] [0, 0, 0] [1, 1, 1]
𝑏 - - - 1 - - - [_, _, 1] - - - - - - -

𝑞0 𝑞1 𝑞2 𝑞3 𝑞4 𝑞5 𝑞6 𝑞7 𝑞8
𝑎 Σ 𝑎 Σ 𝑎 Σ 𝑎 𝑏

(a) Glushkov NFA for regex 𝑎 (Σ𝑎) {3}𝑏 constructed by unfolding

𝑎 Σ 𝑎 Σ 𝑎 Σ 𝑎 𝑏

(b) Simplified diagram for Glushkov NFA for regex 𝑎 (Σ𝑎) {3}𝑏

𝑞0 𝑞1 𝑞2 : 𝑥 𝑞3 : 𝑥 𝑞4
𝑎 Σ / 𝑥 B 1 𝑎 / 𝑥 B 𝑥

Σ, 𝑥 < 3 / 𝑥++

𝑏, 𝑥 = 3

(c) NCA for regex 𝑎 (Σ𝑎) {3}𝑏

𝑎 Σ 𝑎 𝑏
𝑥 B 1 𝑥 B 𝑥

𝑥 < 3 / 𝑥++

𝑥 = 3

(d) Simplified NCA for regex 𝑎 (Σ𝑎) {3}𝑏

𝑎 Σ 𝑎 𝑏
𝑣 · [1, 0, 0] 𝑣

shft(𝑣)

𝑣 [3] = 1

(e) Simplified NBVA for regex 𝑎 (Σ𝑎) {3}𝑏

𝑎 Σ Σ 𝑎 𝑏
𝑣 · [1, 0, 0] 𝑣

𝑣

shft(𝑣)

𝑣 [3] = 1

(f) Action-homogeneous NBVA for regex 𝑎 (Σ𝑎) {3}𝑏

𝑎 Σ / set1 Σ / shift 𝑎 / copy 𝑏 / r(3)

(g) Simplified action-homogeneous NBVA for regex 𝑎 (Σ𝑎) {3}𝑏

Figure 2. Automata constructed from the regex 𝑎(Σ𝑎){3}𝑏.

the NFA constructed from this regex, where 𝑎(Σ𝑎){3}𝑏 is un-
folded into 𝑎Σ𝑎Σ𝑎Σ𝑎𝑏. The Glushkov construction ensures
that all transitions entering a state are labeled with the same
predicate. This property allows us to simplify the NFA dia-
gram to a hardware-friendly representation by omitting the
initial state and pushing the predicates from the edges to the
states. For example, we push the predicate 𝑎 into state 𝑞2 so
that in Fig. 2(b) we have a state labeled with the predicate 𝑎.

Existing ASIC designs for processing automata, such as
AP [10], CA [37], eAP [31] and CAMA [16], support the
matching of 𝑎(Σ𝑎){3}𝑏 by unfolding and executing the cor-
responding NFA. Fig. 3(a) illustrates how CAMA, a state-of-
the-art ASIC automata processor, executes this task. CAMA
uses STEs to represent states, where each STE corresponds
to a state in Fig. 2(b). In the state-matching phase of each
processing cycle, if the STE is active, it will send ‘1’ to a
buffer called active buffer in Fig. 3(a). We call an STE active
iff it is both available and matched by an input element. The
execution of this design involves two steps: routing and ag-
gregation. In the first step, the signal stored in the active
buffer will be routed to another STE by a switch network.
If an STE (e.g., STE1 in Fig. 3(a)) connects to another STE
(e.g., STE2), a dot is put on the crossing point of the switch
network. The value of the dot is ‘1’ iff the STE placed on
the corresponding column is active. In the second step, a
logic OR aggregation is performed on each row of the switch
network. If the aggregation result is ‘1’, the STE on the corre-
sponding row will become available in the next cycle. STE1
in Fig. 3(a) is an initial STE. Users can search for a partial
match of regexes over an input sequence by setting STE1 as
available for each input. STE8 in Fig. 3(a) is a reporting STE,
which will report a match if it is active.

However, unfolding is resource-intensive because the in-
creasing number of STEs and the size of the switch network
lead to significant growth of memory and energy require-
ments. For instance, the matching of the regex 𝑎(Σ𝑎){𝑛}𝑏
requires Θ(𝑛) STEs and a switch network of size Θ(𝑛2).

Naïve Solution with Bit Vectors. A design leveraging
NBVAs can address the inefficiencies of the unfolding solu-
tion. Fig. 2(c) shows the NCA for 𝑎(Σ𝑎){3}𝑏 and Fig. 2(d)
simplifies the diagram by exploiting homogeneity. Fig. 2(e)
shows the corresponding NBVA, where a match is reported
if the state labeled with 𝑏 is active.
Fig. 3(b) shows this BV-based design. Execution in this

design involves three steps: routing, PE computation, and
aggregation. In the first step, instead of the switch network, a
processing element (PE) array is used to route the bit vectors.

155

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Z. Wen, L. Kong, A. L. Glaunec, K. Mamouras, and K. Yang

(a) (b) (c)STE8

S
T

E
8

S
T

E
7

S
T

E
1

bencoded
input

S
T

E
2

a∑

a

STE1

STE2

STE5

STE6

S
T

E
6

∑

S
T

E
4

∑

S
T

E
3

a

S
T

E
5

a

STE3

STE4

STE7

STE8 is

reporting

STE

'1' indicates

STE is

active

active buffer

STE1 is

initial STE

STE8

S
T

E
8

S
T

E
7

S
T

E
1

bencoded
input

S
T

E
2

a∑

a

STE1

STE2

STE5

STE6

S
T

E
6

∑

S
T

E
4

∑

S
T

E
3

a

S
T

E
5

a

STE3

STE4

STE7

STE8 is

reporting

STE

'1' indicates

STE is

active

active buffer

STE1 is

initial STE

bv1 bv2 bv3 bv4

active buffer

S
T

E
4

S
T

E
1

encoded
input ba

S
T

E
2

∑

S
T

E
3

a

PE array

3 3 3 3

r(3)

copy

set1 shift

bv1 bv2 bv3 bv4

active buffer

S
T

E
4

S
T

E
1

encoded
input ba

S
T

E
2

∑

S
T

E
3

a

PE array

3 3 3 3

r(3)

copy

set1 shift

STE4

encoded
input a

STE1

STE2b

∑

STE2a

b

STE3

∑ a

S
T

E
1

S
T

E
2
a

S
T

E
4

S
T

E
2
b

S
T

E
3

set1 copy

bv2a bv2b bv3 bv4

STEs 2a,2b,3,4

are BV-STEs

shift r(3)

active buffer

action

1 2

1

2

3

1 2

3

1

2

Routing

Aggregation

1

2

Routing

Aggregation

1

2

3

Routing

Aggregation

PE computation

1

2

3

Routing

Aggregation

PE computation

1

2

3

Routing

Aggregation

Action execution

1

2

3

Routing

Aggregation

Action execution

Figure 3. Simplified diagrams of (a) CAMA design with unfolding, (b) the naïve design using bit vectors, and (c) BVAP based
on action-homogeneous automata, and their configuration to match regex 𝑎(Σ𝑎){3}𝑏.

The bottom of Fig. 3(b) shows such a PE array, which routes
the initial value of bit vectors stored in the active buffer to
the corresponding PE for computation. Notice if STE𝑖 is not
matched, the initial value of bv𝑖 will be set to all ‘0’s. Each PE
supports a set of operations, including set1 that sets the first
bit to 1 in the bit vector (i.e., 𝑣 · [1, 0, 0] in Fig. 2(e)), copy that
copies the value of bit vector (i.e., 𝑣), and shift that shifts
the bit vector (i.e., shft(𝑣)). Moreover, r(𝑛) reads the 𝑛th bit
from the bit vector, and it will copy the bit vector if this bit
is ‘1’ (i.e., 𝑣 [3] = 1), otherwise it will set the bit vector to be
all ‘0’s. In the PE computation step, each PE will perform its
operation over the received bit vector. Finally, in the third
step, the PE array will aggregate the results of PEs on the
same row with a bitwise-OR computation. This aggregating
result will be used as the initial value of the corresponding
bit vector in the active buffer in the next cycle.
Table 1 illustrates the execution of the naïve design in

Fig. 3(b) for detecting the partial match of the regex over an
input sequence “𝑎𝑏𝑎𝑎𝑎𝑏𝑎𝑏”, i.e., STE1 is active for each input
element that is 𝑎. If an STE is not matched by the current
input element, it will set the value of its associated bit vectors
to be all ‘0’s. STE4 is a reporting STE, which will report a
match if it is active and the corresponding bit vector (i.e.,
bv4) has ‘1’ on the third bit at the beginning of a cycle.
With this design, the number of STEs becomes indepen-

dent of the repetition bound. For example, regex 𝑎(Σ𝑎){𝑛}𝑏
only requires four STEs here, instead of 2𝑛 STEs when un-
folded. However, the hardware resources required by the PE
array in this naïve Bit Vector design grow quadratically with
the number of STEs supported in one tile, because each node
in the routing switch needs one PE. Considering the com-
mon choice of 256 STEs per tile in state-of-the-art automata
processors [16, 31, 37], which is determined by the tradeoff
between the desired STE connectivity and the quadratically
scaling crossbar size, the maïve NBVA approach suffers from
significant area and power overheads in the PE array, which
in turn reduces the benefits from STE reduction.

BVAP Solution. We propose the BVAP design to further
reduce memory and energy costs. BVAP is based on the
action-homogeneous NBVA (i.e., AH-NBVA) model, where
the term action refers to an operation over bit vectors. This
design is inspired by the homogeneity property for NFAs,
where states (instead of transitions) are annotated with char-
acter classes. Our insight is that we can transform an NBVA
so that for each control state 𝑞, all transitions entering 𝑞 are
labeled with the same action. We call an NBVA that satisfies
this property action-homogeneous. Fig. 2(f) shows the AH-
NBVA obtained from the NBVA of Fig. 2(e). The key idea of
the transformation is to split a state with several different in-
coming actions into multiple copies. Each of these copies has
the same action over all its incoming transitions and inherits
the outgoing transitions from the original state. For instance,
the state labeled with Σ in Fig. 2(e) has two actions, 𝑣 · [1, 0, 0]
and shft(𝑣), on its input edges. This state is split into the two
green STEs shown in Fig. 2(f). Fig. 2(g) shows a simpler AH-
NBVA diagram, where set1, shift, copy, r(3) correspond
to 𝑣 · [1, 0, 0], shft(𝑣), 𝑣 B 𝑣 , and 𝑣 [3] = 1 respectively.
Fig. 3(c) shows the conceptual diagram of BVAP, where

STE2a and STE2b are obtained by splitting STE2 with the
AH transformation. In AH-NBVAs, we assign BV actions to
STEs (instead of transitions), and we call an STE carrying
a bit vector a BV-STE. STEs 2a, 2b, 3, and 4 are BV-STEs,
which are activated by signals stored in the active buffer
such that ‘1’ allows BV-STEs to perform corresponding ac-
tions, and ‘0’ sets the value of the bit vector to ‘0’s. STE4 is
the reporting STE, which reports a match if both the STE is
active and the third bit of its associated bit vector (i.e., bv4)
is ‘1’. BVAP performs state-matching and state-transition in
each cycle, just like AP-style designs, but with an additional
bit-vector-processing phase including three operations -
routing, aggregation, and action execution. First, the value
of the bit vector stored in the active buffer is routed to its
corresponding BV-STEs. Next, a bitwise-OR aggregation is
performed on all bit vectors that are routed to the same
BV-STE. Finally, each BV-STE executes its corresponding

156

BVAP: Energy and Memory Efficient Automata Processing for Regular Expressions ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Table 2. Sample execution of the BVAP design in Fig. 3(c), where (1) STE𝑖 shows whether STE𝑖 is active, (2) bv𝑖 → is the initial
value of bit vector, which is set to ‘0’s if STE𝑖 is not active, and (3)→bv𝑖 is the updated bit vector values for the next cycle.

input STE1 STE2a STE2b STE3 STE4 bv2a→ bv2b→ bv3→ bv4→ →bv2b →bv3 →bv4

𝑎 1 0 0 0 0 [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0]
𝑏 0 1 0 0 0 [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] [1, 0, 0] [0, 0, 0]
𝑎 1 0 0 1 0 [0, 0, 0] [0, 0, 0] [1, 0, 0] [0, 0, 0] [0, 1, 0] [0, 0, 0] [0, 1, 0]
𝑎 1 1 1 0 0 [0, 0, 0] [0, 1, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] [1, 1, 0] [0, 0, 0]
𝑎 1 1 0 1 0 [0, 0, 0] [0, 0, 0] [1, 1, 0] [0, 0, 0] [0, 1, 1] [1, 0, 0] [0, 1, 1]
𝑏 0 1 1 1 1 [0, 0, 0] [0, 1, 1] [1, 0, 0] [0, 1, 1] [0, 1, 0] [1, 1, 1] [0, 1, 0]
𝑎 1 0 1 1 0 [0, 0, 0] [0, 1, 0] [1, 1, 1] [0, 0, 0] [0, 1, 1] [0, 1, 0] [0, 1, 1]
𝑏 - - - - 1 - - - [_,_,1] - - -

action to update its bit vector. In contrast to the naïve design
(Fig. 3(b)), BVAP executes the action after the aggregation
of bit vectors. If we view a BVAP action as a function 𝑓

applied to the bit vector, all BVAP actions satisfy the fol-
lowing linearity property: for bit vectors 𝑣1, 𝑣2 of the same
size, 𝑓 (𝑣1) |𝑓 (𝑣2) = 𝑓 (𝑣1 |𝑣2). This property ensures the naïve
design and BVAP generate consistent results. BVAP uses Bit
Vector Module (BVM) to perform computations during the
bit-vector-processing phase (see §5).

BVAP needs𝑂 (1) STEs for 𝑎(Σ𝑎){𝑛}𝑏 since the AH trans-
formation only adds a constant number of STEs. By using
BV-STEs instead of a PE array, BVAP greatly reduces the
memory requirements. Table 2 illustrates the execution of
BVAP, which corresponds to the design in Fig.3(c). The ac-
tion assigned to each BV-STE is performed on the initial
value of bit vectors at the beginning of each processing cy-
cle. Compared to existing automata processors, BVAP effi-
ciently supports regexes with large bounds, e.g. url=.{8000}
in Snort requires 8004 STEs when unfolded and only 270
STEs in BVAP. Previous AP-style hardware is limited to at
most 4096 STEs per regex. Another example can be found
in the ClamAV dataset, where \x43\x30\x30\x30.{9139}
\x65\x6e\x75\x00 represents two sequences of characters
interleaved by 9139 characters and cannot be supported by
state-of-the-art designs.

4 Action-Homogeneous Transformation
The following set of operations is sufficient for NBVAs that
are constructed from regexes: (1) set1, (2) shift, (3) copy, (4)
r(𝑛), (5) r(𝑚,𝑛) that returns 1 if any of the bits 𝑣 [𝑚], 𝑣 [𝑚 +
1], ... 𝑣 [𝑛] is equal to 1, (6) r(𝑛)·set1, and (7) r(𝑚,𝑛)·set1.
E.g., the NBVA for 𝑎𝑏{2, 5}(𝑐𝑑){6}𝑒 is shown below:

𝑎 𝑏 𝑐 𝑑 𝑒
set1

shift

r(2, 5) · set1 copy

shift

r(6)

Supporting the operation r(𝑚,𝑛) (for all possible choices of
𝑚 and 𝑛) in hardware is not practical, because this would
require a fully configurable readout circuit. By rewriting
𝑟 {𝑚,𝑛} into the equivalent 𝑟 {𝑚−1}𝑟 {1, 𝑛−𝑚+1}, we restrict
the set of operations that need to be supported. For example,
𝑎𝑏{2, 5}(𝑐𝑑){6}𝑒 is rewritten into 𝑎𝑏𝑏{1, 4}(𝑐𝑑){6}𝑒 .

𝑎 𝑏 𝑏 𝑐 𝑑 𝑒
set1

shift

r(1, 4) · set1 copy

shift

r(6)

So, it suffices to support read operations r(𝑛) and r(1, 𝑛).
The theoretical NBVA model allows control states to have

bit vectors of different sizes. For the hardware implementa-
tion, however, it is desirable that all bit vectors are of the
same size𝐾 . Bounded repetitions can be partially unfolded so
that bit vectors of size 𝐾 suffice (see §7). In order to optimize
the read operations from the SRAM (see §5), the operation
r(1, 𝑛) for all possible values𝑛 ≤ 𝐾 is undesirable.We choose
to support the operations r(1, 𝐾), r(1, 𝐾/2) and r(1, 𝐾/4),
which we also denote with rAll, rHalf and rQuarter re-
spectively. The figure below shows the AH-NBVA for the
regex 𝑎𝑏𝑏{1, 4}(𝑐𝑑){6}𝑒 with 𝐾 = 8.

𝑎 𝑏 𝑏 𝑏 𝑐 𝑐 𝑑 𝑒
set1 shift

shift

rHalf · set1

rHalf · set1
copy

copy

shift r(6)

The operations needed for AH-NBVA are: set1which creates
a bit vector which is ‘0’ everywhere except for the lowest
position; copy which copies a bit vector from one state to
another; shift which shifts a bit vector and fills in a zero
at the lowest position, and r(𝑛) which reads the 𝑛th bit of
the bit vector (1-based indexing). Given a 𝑘-bit vector, rAll
(resp., rHalf, rQuarter) returns ‘1’ if any of the first 𝑘 (resp.,
𝑘/2, 𝑘/4) bits is ‘1’. We also support combination operations
that apply set1 if the first operation returns ‘1’, including
r(𝑛) · set1, rAll · set1, rHalf · set1, and rQuarter · set1.
These operations create a bit vector that is ‘0’ everywhere
except for the lowest position if the first operation returns
true, otherwise, they create a bit vector with all ‘0’s.
The transformation from an NBVA A to an equivalent

AH-NBVA B, which we call AH transformation, identifies
states that violate the AH property and splits them in several
copies, one for each kind of incoming action. Let us focus
on a state 𝑞 that has distinct incoming actions 𝜗1, . . . , 𝜗𝑘 . We
create 𝑘 copies 𝑞1, . . . , 𝑞𝑘 of the state. If there is a transition
𝑝 →𝜎/𝜗𝑖 𝑞 in A, we add the transition 𝑝 →𝜎/𝜗𝑖 𝑞𝑖 to B. If
there is a transition 𝑞 →𝜎/𝜗 𝑞′ in A, then we add in B a
transition 𝑞𝑖 →𝜎/𝜗 𝑞′ for every 𝑖 = 1, . . . , 𝑘 .

157

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Z. Wen, L. Kong, A. L. Glaunec, K. Mamouras, and K. Yang

Active Vector

BVM

Input

STE1

STE2a

STE2b

STE3

State Matching

State Transition

MFCB

E
n

c
o

d
e

r

set1

copy

shift

read

C
o

n
tro

lle
r

Bit Vector Module

R
e

g
is

te
r

Register

BV-act

BV-

read

S
T

E
1

a
S

T
E

1
a

S
T

E
2

a
∑

S
T

E
2

b
∑

S
T

E
3

a
S

T
E

3
a

S
T

E
4

b
S

T
E

4
b

STE4

BV2a
10000 00

BV2a
10000 00

BV2b
01000 10

BV2b
01000 10

BV3
00100 10

BV3
00100 10

BV4
00000 00

BV4
00000 00

STE2a

STE2b

STE3

STE4

is-BV

BV-

act

BV-read

4

Figure 4.Diagrams of the proposed Bit VectorModule (BVM)
and its integration with CAMA. A toy example of matching
regex 𝑎(Σ𝑎){3}𝑏 is illustrated.

5 Hardware Primitives of BVAP
This section covers the key hardware primitives to enable
AH-NBVA processing in a state-of-the-art in-memory au-
tomata processor. Since we adopt the exact hardware designs
for state matching and state transition as CAMA [16]
(see §3 and Fig. 3 (a)), this section focuses on the Bit Vector
Module (BVM) to enable bit-vector-processing.

Bit Vector Module (BVM). Our BVM contains a cluster of
Bit Vectors (BV), aMulti-bit Fully-connected CrossBar (MFCB),
and a local controller (see Fig. 4). Each BV stores a bit vector
corresponding to a BV-STE in an AH-NBVA model and ex-
ecutes BV operations based on a small custom instruction
set defined in Table 3. We further equip each BV with an
instruction buffer to individually program its action, since
our AH-NBVA model demands each BV-STE executing its
own action. During the bit-vector-processing phase, BVM
updates the value of BVs attached to activated BV-STEs. As
detailed in §3, bit-vector-processing involves three opera-
tions: aggregation, routing, and action execution. The ag-
gregation (bitwise OR) and routing of BVs are performed
inside the MFCB, which works similarly to the state tran-
sition crossbar first introduced in CA [37]. The routing of
MFCB is pre-programmed based on compiled AH-NBVAs.
We introduce three key optimizations to BVM beyond the
conceptual diagram shown in Fig. 3(c).
First, we separate routing switches for state transition

and bit-vector-processing to enhance the bandwidth of BV
routing, because each bit vector contains many more bits
than a normal STE. As such, BVM can be employed as an
add-on module to state-of-the-art in-memory automata pro-
cessors, which only needs to communicate with the Active
Vector block that stores and controls the active STEs. The
input to BVM is BV-act, signaling the activated BV-STEs. It
is a masked subset of the active buffer in our baseline (see

Table 3. Instruction set of BVAP.

Index Value Action Step

Instruction
Code

0 0 No set1 action Swap1 set1

1 0 copy Swap1 shift

2-4

0xx no-read action

Read
100 r (i.e., read)
101 rQuarter
110 rHalf
111 rAll

Pointer 5-10 0-63 Pointer to 𝑛 in r(𝑛) Read

Per

Word

[1 0]

[1 0]

[0 1]

[0 0]

[0]

[1]

MFCB

BV2b BV3

[1 0]

[1 0]

[0 1]

[0 0]

[0]

[1]

MFCB

BV2b BV3

[1 0]

[1 0]

[0 1]

[0 0]

[0 1]

[1 0]

MFCB

BV2b BV3

[1 0]

[1 0]

[0 1]

[0 0]

[0 1]

[1 0]

MFCB

BV2b BV3

[0 1]

[1 0]

[0 1]

[1 0]

[0 1]

[1 0]

MFCB

BV2b BV3

[0 1]

[1 0]

[0 1]

[1 0]

[0 1]

[1 0]

MFCB

BV2b BV3

A
c
ti
v
e
 V

e
c
to

r Read Swap

Figure 5. Read and Swap steps in bit-vector-processing
phase. The STE2b and STE3 for regex 𝑎(Σ𝑎){3}𝑏 are used
for illustration, where blue/red texts indicate values being
read and written.

IBL0

O
B

L
0

IBL1

O
B

L
1

IBL3

O
B

L
2

IBL2

O
B

L
3

6T

cell

Convention 8T cell

4-port cross-point cell

port0

port1 port2 port3

Poly

Diffusion

Metal1

Metal2

Metal3
port0(a) (b)

Figure 6. The 4-port cross-point design and layout.

Fig. 3(a)). A is-BV mask is added to allow reconfiguring a
BV-STE into a normal STE and gate the corresponding BV
when there are more BV-STEs than what a regex requires.
The output of BVM is BV-read, which is the result of r(𝑛)
or r(1, 𝑛). It is returned to the Active Vector to deactivate
BV-STEs with read failures.
Second, all read actions are performed at the source BV-

STEs, so that only the output bits of read actions (BV-read)
need to route, rather than the entire bit vector, saving signif-
icant routing energy. To realize such an optimization, BVM
executes in two sequential steps, Read and Swap, as illus-
trated in Fig. 5. In the Read step, each BV performs the read
actions, and the results (BV-read) are routed through MFCB
and stored in MFCB’s output buffer. The default BV-read
value for a BV-STE is ‘1’ if its instruction is no-read. In addi-
tion to routing, the MFCB aggregates (bitwise OR) all read
outputs with the same destination. Lastly, based on aggre-
gated read outputs, certain BV-STEs are deactivated and the
corresponding BVs are reset. The Swap step reads bit vector
values from BVs, routes and aggregates them before writing
back to the destination BVs. Swap step is used to execute
copy, shift, and set1 actions (see Table 3).

158

BVAP: Energy and Memory Efficient Automata Processing for Regular Expressions ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Read

Swap 1

Swap 2

Swap 3

T
im

e

Swap 10

Read out Route Write back

Swap 9

Copy Shift

W7 W6W7 W6

W2 W1 W0W2 W1 W0

W0 BV-readW0 BV-read

W1 W0W1 W0

BV-readBV-read

Same

Address

To Active Vector

W7W7

W7 W7W7 W7

W2 W1 W1W2 W1 W1

W0 BV-readW0 BV-read

W1 W0W1 W0

BV-readBV-read

Address

Shift

W0W0

Read out Route Write back

Shift data

8x8 8T-SRAM

W0

W1

W7

W2

(a) (b)

... Addr: 0~6 Addr: 1~7
...

...

...0 8 56...0 8 56

...1 9 57...1 9 57

...2 10 58...2 10 58

...7 15 63...7 15 63

Figure 7. (a) Bit vector storage map; (b) Pipelining of bit-
vector-processing phase for copy and shift actions.

Third, we designed a semi-parallel routing strategy for im-
plementing the aforementioned Swap step. Parallel routing
of 𝑛-bit bit vectors using 𝑛 FCBs takes 1 cycle but requires a
large area, while serial routing incurs 𝑛 times longer latency
and 𝑛 times system throughput reduction than the parallel
alternative. Our strategy is to split each bit vector into words
of the same bit-width as the MFCB, and execute the Swap
step word by word until the entire BV is updated, to balance
area and throughput overheads.

Circuit Design of MFCB. Implementing MFCB with mul-
tiple FCBs is straightforward but inefficient because all bits
share identical routes and routing memories are duplicated.
Here, we employ a 4-port cross-point circuit for MFCB (see
Fig. 6(a)). Each cross-point comprises a 6T SRAM cell storing
routing information and four independent 2T ports. Each
port operates with its own input bitline (IBL) and output
bitline (OBL). In the 28nm layout, we find having four ports
in each cell is optimal as it fully utilizes the metal routing
tracks. Addingmore ports will lead to wasted area and reduce
overall density. Fig. 6(b) shows the layout of our 4-port cross-
point using the logic design rule. Compared to using four
conventional 8T cells, the 4-port cell saves 30% area without
compromising functionality. In our final design, each MFCB
contains two 4-port cross-points to process 8 bits per cycle.

Circuit Design of Bit Vector (BV). While bit vectors are
common in hardware designs [6, 36], conventional register-
based designs exhibit critical drawbacks for usage in BVAP.
First, since each BV-STE requires a BV, register-based logic
takes significant area and energy. Second, the latency of BVM
is predominantly constrained by the bandwidth of routing
switches, rendering the high bandwidth of register-based
BVs unnecessary. Third, supporting the read action r(1, 𝑛)
requires an additional reconfigurable OR tree.
The size of bit vectors is an important design parameter

that affects the trade-off between area and throughput. Our
design space exploration (see §8) suggests that the optimal bit
vector size is less than 64 across all benchmarks. Hence, we
custom-designed a compact 64-bit Bit Vector (BV) circuitry
consisting of one tiny 8T-SRAM array, instruction latches,

and control logic. Similar to routing switches, we employ 8T-
SRAM to efficiently perform OR logic on all cells sharing the
same bitline, which is essential to realize r(1, 𝑛) action for BV.
8T-SRAM-based BV achieves more than 50% area reduction
over a register-based alternative and supports simultaneous
reading and writing of two words in a single cycle, which is
essential for the proposed semi-parallel implementation of
BV actions. The dimension of the 8T-SRAM array is made
8×8 to match the maximum bandwidth of MFCB (8 bits per
cycle). Here, we map the 64-bit bit vector along the bitlines
of the 8T-SRAM, as shown in Fig. 7(a), in order to simplify
address-controlled action shift and support virtual BV sizes.
Virtual BV is designed to efficiently support scenarios that
benefit from shorter bit vectors even when the hardware BV
size is fixed to 64 because it reduces cycles and energy to
process a BV in our semi-parallel scheme. The virtual BV is
configured by the compiler (see §7) and realized by simply
adjusting the number of Swap steps in the BVM controller.

In the Read step, BV executes read actions r(𝑛) and r(1, 𝑛)
as described in § 4. For r(𝑛), the bit vector value at bit posi-
tion 𝑛 is read from the SRAM and sent to MFCB. For r(1, 𝑛),
because bitwise OR logic within the 8T-SRAM can only be
performed along the eight bitlines, the hardware restricts the
choice of 𝑛. Given a 𝐾-bit (virtual) BV, our design supports
r(1, 𝐾/4), r(1, 𝐾/2), and r(1, 𝐾) by combining the OR results
of 2, 4, and 8 bitlines. These three actions are programmed
by rQuarter, rHalf, and rAll instructions. AH-NBVA can
be compiled with only these three r(1, 𝑛) actions (see §4)
Meanwhile, all inactive BVs are reset by raising all RWLs
and writing ‘0’ to all cells in one cycle.
In the Swap step, actions copy, shift, and set1 are exe-

cuted as shown in Fig. 7(b). A BV first reads and routes one
word through the MFCB to update the word. Depending on
its own instruction, each BV selects from two possible writ-
ing addresses generated by the local controller of BVM. For
copy, the writing address will be the same as the word read-
ing address. For shift, the writing address is the reading
address plus one. The Swap step works in a pipeline manner
with a 3-cycle latency, in order to avoid data hazards caused
by shift without performance compromise. During shift,
when writing the last word to the first address, the word
must be right-shifted by one bit, and padded with ‘0’. When
a BV takes the set1 instruction, it is power-gated except for
a simple logic that sends the stored constant to the MFCB.
Working Example. Fig. 4 shows a working instance of

BVAP for matching 𝑎(Σ𝑎)3𝑏 with the AH-NBVA shown in
Fig. 2(g). There are five STEs in total, STE1 is a standard
STE while the other four STEs are BV-STEs. The action of
each BV-STE is programmed with the instruction set. STE1
is activated upon matching an input character a. If the fol-
lowing character is Σ, STE2a will be activated. When STE2a
is activated, BV2a will send the constant set value (2’b1000)
to STE3 through MFCB. For every cycle that BVM is active,
the aggregation of BV2a and BV2b values is sent to BV3

159

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Z. Wen, L. Kong, A. L. Glaunec, K. Mamouras, and K. Yang

via MFCB. When STE3 is activated, BV3 sends its bit vector
to BV2b and BV4 in the Swap step. Meanwhile, BV3 reads
the third bit of its bit vector as BV-read of action r(3) in
the Read step and sends it to the Active Vector. When BV2b
receives the updated bit vector from BV3, it always executes
the shift action before writing back. Finally, the activation
of reporting state STE4 requires the read result of STE3 to
be ‘1’ and the incoming character is b. Here, BV4 is deacti-
vated because it has r(3) instruction, while BV2a is partially
power-gated and only sends a constant because of its action
set1. The state transition among all STEs is implemented
with the standard state transition in SOTA designs, while
the routing among BVs is achieved in MFCB. For illustration
purposes, this example reduces the pointer in the instruction
set (Table 3) from the actual 6 bits to 2 bits.

6 System Architecture of BVAP
The hierarchical architecture of BVAP, shown in Fig. 8, com-
prises three levels: bank, array, and tile. Each bank includes
four arrays and I/O, while each array consists of sixteen tiles,
which is limited by the size of the global switch used for
state transitions beyond a single tile. Because BVs cannot
communicate across tiles by design, the maximum upper
bound of repetition is limited by the number of BVs in a
BVM. Based on the observation that the ratio of BV-STEs is
typically below 18% across our benchmarks, we designed 48
BVs for each 256-STE tile, which covers over 99% of regexes
in our datasets. The unsupported regexes can be executed
via partial unfolding. As such, each BVAP bank supports up
to 16,384 STEs, with 3,072 of them being BV-STEs. Each BVM
contains 48 BVs and two 48×48 4-port FCBs, functioning as
an MFCB. The state matching and state transition modules
are adopted from CAMA [16], including a 256×32 8T-SRAM-
based CAM and a 128×128 Reduced CrossBar (RCB). Tiles
are grouped in pairs to further support reconfiguration be-
tween RCB and FCB modes for regexes with different state
transition sparsities. In the 32-bit FCB mode, one CAM sub-
array and one BVM are power-gated, while the two crossbars
function as one 128×128 FCB.
To handle varying bit-vector-processing latency across

tiles, BVAP has a Global Controller to coordinate behavior
throughout the array (see Fig. 9). When BVM of any tile
is activated, the Global Controller stalls other tiles within
the same array, because the Array Input Buffer is designed
to broadcast to all tiles with low bandwidth. To reduce the
throughput penalty incurred by the stall, we designed two
levels of buffering to partially hide the latency across the
array. When multiple BVMs are activated, the Global Con-
troller finds the one with the longest bit-vector-processing
latency and sends its tile ID to the input buffer to properly
stall input broadcasting. An 8-entry look-up table in the Ar-
ray Input Buffer stores the maximum bit-vector-processing
latency of each tile to assist this process. This dynamic stall

3
2
x
2
5
6
 C

A
M

3
2
x
2
5
6
 C

A
M

A
c
t V

e
c
.

A
c
t V

e
c
.

B
V

M
B

V
M

R
R

C
B

R
R

C
B

Mode 1: 32 bits RCB
Array 3

Ping-pong Buffer

8-entry

FIFO
LUT

Polling Arbiter

eninput

tile ID

symbol

Array 0 Input buffer

...
Array 3 Input buffer

Bank Input Buffer

6
4

-e
n
tr

y
 F

IF
O

2-entry

FIFO
enoutput

index

full

Array 0 Output buffer

Bank Output Buffer

...
Array 3 Output buffer

Array 0

B
u
s

3
2
x
2
5
6
 C

A
M

3
2
x
2
5
6
 C

A
M

A
c
t V

e
c
.

A
c
t V

e
c
.

B
V

M
B

V
M

R
R

C
B

R
R

C
B

Mode 2: 32 bits FCB

...

Global

Switch

Global

ControllerI
O

DMA

Figure 8. Overview of a hierarchical BVAP bank.

CK

D Q

RN

CK

D Q

RN
CK

D Q

RN

CK

D Q

RN
CK

D Q

RN

CK

D Q

RN
CK

D Q

RN

CK

D Q

RN

report

Is-BV

match
next

BV-read

BV-clk

clk

act state

Active Vector

BVAP-S

BVM

Controller

BVM

s
ta

ll

Tile 0

I/O
 B

u
ffe

r

Priority

Arbiter

Input

Counter

e
n

o
u

tp
u

t

...
...

...

CK

D Q

QNCK

D Q

QN
CK

D Q

QNCK

D Q

QN

symbol
eninput

tile ID

index

full

Global Controller

BV-act

Figure 9. The control logic of a BVAP array.

scheme optimizes the delay penalty to support tiles with
varying bit-vector-processing delays while ensuring correct-
ness. The additional control logic and look-up table that
enable this scheme take negligible area and energy (< 1%) of
a BVAP array, according to our synthesized design.

Input/Output Streaming. The I/O interfaces BVAP and
the host system. The hardware configuration is first loaded
to BVAP. Then the system transmits streaming data through
DMA to the Bank Input Buffer of BVAP for processing. When
the host receives matching results from the Bank Output
Buffer, it will take further analysis and actions.

To efficiently support asynchronous data processing across
multiple arrays, we have designed an I/O buffer hierarchy
(Fig. 8). The two-level input buffer accommodates scenar-
ios where BVM in different arrays are activated by different
symbols, and the delay of the bit-vector-processing phase
is different. The Bank Input Buffer is a 128-entry ping-pong
buffer to hide the latency of loading data through DMA. The
Bank Input Buffer employs a polling arbiter to process the
data requests by the Array Input Buffers. To ensure that
Array Input Buffers are never empty, the bandwidth of the
Bank Input Buffer and the capacity of the Array Input Buffer
must scale linearly with the number of BVAP arrays in a
bank. Considering the tradeoff between DMA sharing and

160

BVAP: Energy and Memory Efficient Automata Processing for Regular Expressions ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

(a) (b)

SM ST

SM ST

SM ST

Input 1

Input 2

Input 3

No BV-STEs

activate

 BV-STEs

activate

1 2 3 4-7 8

R S S

SM

R

Input 1

Input 2

1 2 3 4

ST

5

S1 S2 S3 S4

SM

R

ST

S1 S2 S3 S4

6

...
... BV clk

alignment

Cycle Cycle

(a) (b)

SM ST

SM ST

SM ST

Input 1

Input 2

Input 3

No BV-STEs

activate

 BV-STEs

activate

1 2 3 4-7 8

R S S

SM

R

Input 1

Input 2

1 2 3 4

ST

5

S1 S2 S3 S4

SM

R

ST

S1 S2 S3 S4

6

...
... BV clk

alignment

Cycle Cycle

Figure 10. Scheduling of (a) BVAP and (b) BVAP-S. (Abbre-
viations: SM: state matching, ST: state transition, R: Read
step, S: Swap step)

the Array Input Buffer overheads, we chose four arrays in
a bank. Under this configuration, each array contains an
8-entry FIFO as its input buffer, which broadcasts one 8-bit
input symbol to all tiles when the array is not stalled by bit-
vector processing. When the number of symbols in a FIFO is
less than four, the FIFO will request new data from the Bank
Input Buffer. Upon request, the Bank Input Buffer transmits
four symbols at a time to the array initiating the request.
The output buffer is simpler since the match rate is typi-

cally lower than 10%. Once a report flag is issued by a tile,
the counter that monitors the input sequence (in Fig. 9) sends
the index to the output 64-entry FIFO. To alleviate conges-
tion when multiple arrays request the bus simultaneously,
each array has its own 2-entry FIFO to store report results.
In the unlikely event that the output buffer of an array is
full, a full alert is sent to the Global Controller to stall the
array. The final outputs are sent out through DMA when the
Bank Output Buffer is full.

Pipeline in BVAP. Fig. 10(a) shows the time schedule
of BVAP. Due to the reuse of the Active Vector for state
matching, state transition, and BVM, all parts of the BVAP tile
can work in parallel. In addition, as the bit-vector-processing
phase has smaller step delays compared to state matching
and state transition phases, a faster clock, referred to as the
Bit Vector clock (BV clk), is assigned to BVM. The result
of BVM is aligned with the clock of the system at the end
of the bit-vector-processing phase. BVM is activated only
when BV-STEs are active, and then the latency is determined
by the bit-vector-processing phase. If all BV-STEs remain
inactive, BVM is disabled, and the latency is determined by
state matching and state transition phase. This event-driven
scheme increases the throughput of BVAP.
To support continuous streaming input from sensors, a

constant processing throughput is necessary to avoid a huge
input buffer. We devise a BVAP-S mode (see Fig. 10(b)), where
BVM is activated for every input symbol. As such, the bit-
vector-processing phase becomes the critical path. With
BVM maintaining the same clock frequency as in standard
BVAP mode, the system clock is slowed down. As a result,
state matching and state transition modules can save energy
by running slower at a lower supply voltage (reduction from
0.9V to 0.65V in our experiment in §8).

7 Compiler Implementation
We offer a regex-to-hardware compiler that enables the high-
level programming of the hardware. Our compiler rewrites
regexes taking into account two key parameters: the unfold-
ing threshold of bounded repetitions and the virtual bv size
(defined in §5).

The rewriting with the use of unfolding is straightforward.
The compiler unfolds bounded repetitions when the upper
bound is below the unfolding threshold.

Example 7.1. If the unfolding threshold is set to 4, the
compiler will rewrite the regex 𝑎(𝑏𝑐){2}𝑑{1, 3}𝑒 𝑓 {2, }𝑔{7}
to 𝑎𝑏𝑐𝑏𝑐𝑑𝑑?𝑑?𝑒 𝑓 𝑓 𝑓 ∗𝑔{7}, where 𝑏𝑐𝑏𝑐 , 𝑑𝑑?𝑑?, and 𝑓 𝑓 𝑓 ∗ are
unfolded from (𝑏𝑐){2}, 𝑑{1, 3}, and 𝑓 {2, } respectively. No-
tably, 𝑔{7} is not unfolded as 7 exceeds the threshold.

Since the bit vectors we use have a fixed size, the compiler
splits each large bounded repetition into smaller pieces to
ensure each piece fits within the bit vector. We illustrate this
with examples for a virtual BV size of 64.

Example 7.2. The compiler rewrites the regex 𝑎𝑏{147}𝑐
into 𝑎𝑏{64}𝑏{64}𝑏{19}𝑐 . The sub-regex 𝑏{147} is equivalent
to 𝑏{64}𝑏{64}𝑏{19} because 147 = 64 + 64 + 19.
The regex 𝑎𝑏{2, 114}𝑐 is rewritten by the compiler into

𝑎𝑏{1, 64}𝑏{1, 32}𝑏{0, 16}𝑏{0, 2}𝑐 . The occurrences of bounded
repetitions 𝑏{1, 64}, 𝑏{1, 32}, and 𝑏{0, 16} are supported by
the hardware since they can be transformed into states with
actions rAll, rHalf and rQuarter respectively. If the un-
folding threshold is 4, this regex will be further rewritten as
𝑎𝑏{1, 64}𝑏{1, 32}𝑏{0, 16}𝑏?𝑏?𝑐 .

We rewrite 𝑎{1, 100} as 𝑎{1, 64}𝑎{0, 32}𝑎?𝑎?𝑎?𝑎?, where
𝑎{1, 64} and 𝑎{0, 32} are supported by actions rAll and
rHalf respectively.

Our compiler aims to minimize the number of occurrences
of bounded repetitions when rewriting regexes given an up-
per bound of the size of the bit vector. This strategy reduces
the memory needed for mapping bit vectors on hardware.

Compilation Procedure. Our compiler follows a sequence
of steps to convert a set of regexes into JSON configuration
files for programming the hardware: (1) The compiler first
parses the regex and unfolds bounded repetitions whose up-
per bound is ≤ 2. (2) The compiler analyzes input symbols
that occur in regexes and generates an encoding schema for
every input symbol. We use a similar encoding algorithm
as presented in [16]. (3) Using the user-specified unfolding
threshold and the virtual BV size, the compiler applies the
previously mentioned rewriting rules. It unfolds regexes and
splits large bounded repetitions. (4) After that, the compiler
constructs corresponding NBVAs for regexes and transforms
them into AH-NBVAs. (5) Finally, the compiler produces a
JSON file to describe the generated automata. This file serves
as the configuration file for programming the hardware.

161

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Z. Wen, L. Kong, A. L. Glaunec, K. Mamouras, and K. Yang

Table 4. Circuit models in 28nm.

Type Size Energy
(pJ)

Delay
(ps)

Area
(𝜇m2)

Leakage
(𝜇A)

8T SRAM
routing switch

128×128 1-14.2 298 5655 57
256×256 2-55 410 18153 228

8T CAM 32×256 33.56 336 7838 28.5
4-port SRAM
routing switch

48×48 0.76-3.25 173 1818 25

Bit Vector 64 1.37 178 17.7 0.56
Global wire 1 mm 0.07 66 50 N/A

8 Experimental Evaluation
In this section, we evaluate the performance of BVAP. We
first introduce the datasets we used for benchmarking and
explain the setup of our experiments. We then use a micro-
benchmark to evaluate the performance of BVAP with differ-
ent upper bounds of bounded repetition and different match
rates. We also perform a parameter sweep to select the best
bit vector size and the unfolding threshold for each dataset.
Finally, we fix the value of the bit vector size based on the
result of the parameter sweep and evaluate the performance
of BVAP against CA, eAP, and CAMA.

Datasets. ANMLZoo [44] and AutomataZoo [45] are pop-
ular benchmarks for evaluating regexmatching and automata
processors, including datasets like Snort, ClamAV, and YARA.
However, bounded repetitions are unfolded in ANMLZoo
and AutomataZoo for simple execution and thus are not
suitable for evaluating our work on efficient processing of
regexes with bounded repetitions. Therefore, we collected
seven datasets from multiple real-world applications, includ-
ing around 11,000 regexes with non-trivial (maximum upper
bound > 4) bounded repetitions with upper repetition bounds
exceeding 10,0001. These datasets are: (1) the Snort [28, 34]
and (2) Suricata [38] datasets which contain patterns for net-
work traffic, (3) the Prosite dataset [29, 32] which includes
patterns for detecting protein motifs, (4) theClamAV [9] and
(5) YARA [43] datasets which contains patterns for identify-
ing the presence of viruses, (6) the SpamAssassin dataset
[12] which includes patterns for detecting spam email, and
(7) theRegexLib dataset [27] which is a collection of regexes
for describing email addresses, phone numbers, URL, etc.

Experiment Setup. Wedeveloped a custom cycle-accurate
simulator for BVAP, which can also simulate existing in-
memory automata accelerators like CA, eAP, and CAMA.
The simulator reads a configuration file generated by the
compiler and performs thematching over a sequence of input
symbols. The simulator emulates hardware behavior cycle
by cycle with the actual dataflow. Meanwhile, we performed
consistency checks to verify the functionality of BVAP and
the correctness of the hardware simulator by comparing its
matching results against a reliable software matcher. Table 4
lists circuit models used in our evaluations, including access

1Available at https://kmamouras.github.io/projects/regexes/datasets

0.25

0.50

0.75

1.00

16 64 256 1024

upper bound n

e
n
e
rg

y
p
e
r

sy
m

b
o
l

(n
o
rm

a
liz

e
d
 b

y
C

A
M

A
)

ratio α

 5%
10%
15%
20%

2.5

5.0

7.5

10.0

16 64 256 1024

upper bound n

c
o
m

p
u
te

 d
e
n
si

ty
(n

o
rm

a
liz

e
d
 b

y
C

A
M

A
)

Figure 11. Energy per symbol and compute density of BVAP
(normalized by CAMA) across bit-vector activation ratio 𝛼
and 𝑛 in 𝑟𝑎{𝑛}.

0.00

0.25

0.50

0.75

1.00

32 128 512

upper bound m

e
n

e
rg

y
 p

e
r

s
y
m

b
o

l
(n

o
rm

a
liz

e
d

 b
y
 C

A
M

A
)

engine

BVAP

CNT

2

4

6

32 128 512

upper bound m

c
o

m
p

u
te

 d
e

n
s
ity

(n
o

rm
a

liz
e

d
 b

y
 C

A
M

A
)

Figure 12. Energy per symbol and compute density of BVAP
and CNT (normalized by CAMA) across𝑚 in 𝑟𝑎{64}𝑏{𝑚}.

energy, delay, and area. These values are derived from SPICE
simulations on custom-designed SRAM and CAM arrays in
TSMC 28nm CMOS. The values of global wire come from
CA [37]. The BVM occupies 4490 𝜇m2, which is 20% smaller
than RRCB. The energy in Table 4 is simulated under various
input vector and output vector conditions. The energy of
routing switches scales up with both the number of activated
wordlines and the number of "1" on OBLs. The global wire
estimation is based on the data provided in CA [37]. For a
fair comparison, all other automata processor architectures
reported in this paper are simulated with the same circuit
model and simulator. Since a BVAP tile is 1.5× larger than
a CAMA tile, BVAP’s global wire delay is estimated to be
39.1ps, which is 50% larger than the 26.1ps global wire de-
lay reported by CAMA [16]. The largest delay of the BVAP
pipeline stage is 449.1 ps, which sets its clock frequency to
2 GHz. As explained in §6, BVM runs at a faster clock for
higher throughput, which is 5GHz based on Table 4. Note
all chosen clock frequencies include a 10% safety margin.

Two key performance metrics we focus on are energy per
symbol and compute density. Energy per symbol measures
energy efficiency by dividing the total energy cost by the
number of processed input symbols. Compute density is
calculated by dividing the processing throughput by the
total area, representing the area efficiency of the processor.

Micro-benchmarks. With crafted micro-benchmarks, we
illustrate the merits of BVAP without considering mapping
multiple regexes to fixed-sized tiles (i.e. we customize the
memory size for a single regex). The BV size is fixed to 64.
We first consider the regex 𝑟𝑎{𝑛}, where 𝑟 is 𝑎 · 𝑎 · · ·𝑎

(16-fold concatenation of 𝑎), to evaluate the impacts of the

162

BVAP: Energy and Memory Efficient Automata Processing for Regular Expressions ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

bit-vector-activation ratio 𝛼 (representing the proportion of
input elements that activate BV-STEs) and the upper bound
of the repetition 𝑛. We set the length of 𝑟 to be 16 because,
in the analysis of RegexLib, a comprehensive collection of
regexes used in various domains, the average number of
normal STEs is 16. We build the input sequence by selecting
each element from symbols 𝑎 and 𝑏 with a certain probability
distribution, thereby controlling 𝛼 . Our evaluation considers
𝛼 values of 5%, 10%, 15%, and 20% given 𝛼 is rarely above 10%
in real-world applications. Fig. 11 shows that BVAP offers
consistently lower energy per symbol (i.e., better energy
efficiency) and higher compute density for 𝑛 ≥ 16 compared
to CAMA. Increasing 𝑛 improves both metrics because each
BV-STE in BVAP replaces more normal STEs, saving both
area and state transition energy. Higher𝛼 values, on the other
hand, worsen the compute density due to more frequent
BV-STE activations, reducing throughput and negatively
affecting compute density. The energy per symbol also gets
slightly worse with higher 𝛼 because of energy overhead in
Bit Vector processing but is consistently better than CAMA.
One may wonder about the effectiveness of only adding

counters as an alternative to matching regexes with bounded
repetition [10]. In principle, this method faces difficulties in
dealing with counter-ambiguous regexes [17], where a count-
ing state of the NCA constructed from the regex carries differ-
ent counter values (see Fig. 1). Nonetheless, we implemented
this solution by adding counters to the CAMA architecture,
which we call CNT, and consider a second regex 𝑟𝑎{64}𝑏{𝑚}
for varying integer values of𝑚. While the counter element
can process 𝑏{𝑚}, 𝑎{64}, being counter-ambiguous, necessi-
tates unfolding to be executed by CNT. In comparing BVAP
with CNT and CAMA, Fig. 12 shows that BVAP consistently
consumes less energy per symbol than CNT, and achieves
higher compute density against CNT for𝑚 ≤ 512.

Design Space Exploration. The bit vector size (bv_size)
and unfolding threshold (unfold_th) are two user-controlled
parameters that offer application-specific optimization of
BVAP’s area, energy, and throughput performance. Larger
bv_size enables higher regex compression rates, saving area
and energy, but at the cost of increased delay during the bit-
vector-processing phase. Smaller unfold_th allows more
BV-STEs with small upper bounds of bounded repetitions
to be compiled, potentially leading to underutilization of
bit vectors during matching. In this experiment, we use all
seven datasets and consider the mapping of NBVAs to the
actual hardware implementation. To expedite the simula-
tion, we selectively sampled >300 regexes from each dataset,
while keeping a similar distribution of the number of STEs
in the subset. The regexes are mapped to BVAP arrays with
a greedy mapping algorithm similar to that in [16].
Fig. 13 depicts BVAP compute density and energy delay

product (EDP) across bv_size and unfold_th combinations.
We find that the best points of compute density and EDP

Table 5. Parameters achieving the best FoM in each dataset.
(RL. is the abbreviation of RegexLib. SpamA. is the abbrevia-
tion of SpamAssassin.)

dataset ClamAV Prosite RL. Snort SpamA. Suricata YARA
bv_size 64 16 16 64 16 64 64
unfold_th 8 4 4 12 12 12 8

are not always aligned with the same workload. Therefore,
we further define a figure of merit (FoM) for optimization
purposes, where FoM = total energy × area/throughput,
to evaluate the BVAP with the trade-off between energy-
efficiency and compute density. Fig. 13 also depicts BVAP
FoM across bv_size and unfold_th combinations, while
Table 5 presents parameters yielding the best FoM.

Real-World Benchmarks. We evaluated our proposed
architecture using real-world inputs collected from appli-
cations linked to each dataset, compiling all regexes using
optimal parameters from the design space exploration. Given
that the optimal BV size found in design space exploration
is 64 or less, we set the physical bit vector size to 64, which
leads to an upper bound of 3072 for bounded repetitions in
regexes, because a tile contains 48 BVs. The virtual bit vector
size for each dataset is chosen based on Table 5. The wasted
BVM area due to the partial use of BVs was considered in
the benchmark evaluation. Fig. 14 summarizes the metrics
(area, energy per symbol, power, compute density, through-
put, and FoM) of BVAP, BVAP-S, CAMA [16], eAP [31], and
CA [37]. Averaging across all benchmarks, BVAP achieves no-
table reductions in area, power, and energy per symbol over
CAMA, CA, and eAP. The average compute density of BVAP
is on par with CAMA but is remarkably higher than CA by
134% and eAP by 62%. On Prosite and SpamAssassin datasets,
BVAP has lower compute density than CAMA, because most
bounded repetitions in Prosite have small upper bounds, and
the proportion of BV-STEs in SpamAssassin is only ∼ 5%. On
other datasets, BVAP’s compute density surpasses CAMA by
64% (Snort), 65% (Suricata), 18% (YARA), and 34% (ClamAV).
Meanwhile, BVAP achieves similar throughput as CA and
eAP but is slower than CAMA by 11.2%. BVAP improves FoM
4.3×, 50×, and 33× compared to CAMA, CA, and eAP.

We also evaluated the BVAP-S mode for streaming input
without buffering. Compared to BVAP, BVAP-S saves energy
and power by 39% and 79%, thanks to the lower supply volt-
age for state matching and state transition hardware. But it
should also be noted that the throughput and compute den-
sity of BVAP-S are lower than BVAP due to its reduced clock
frequency. These properties make BVAP-S more appropriate
for direct sensor connection in edge computing scenarios.

9 Related Work
Several studies have extended traditional automata with
counters to handle regexeswith bounded repetitions. XFA [33]

163

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Z. Wen, L. Kong, A. L. Glaunec, K. Mamouras, and K. Yang

compute density

energy delay product (EDP)

Figure of Merit (FoM)U
n
fo

ld
 t
h
re

s
h

o
ld

BV size

Figure 13. Compute density, EDP, and FoM results of design space exploration in ClamAV, Prosite, RegexLib, Snort, SpamAs-
sasssin, Suricata, and YARA datasets. All values are normalized to that of CAMA.

BVAP

BVAP-S

CAMA

eAP

CA

Figure 14. Comparison of the area (mm2), energy per symbol (nJ/byte), power (Watt), compute density (Gbps/mm2), throughput
(Gbps), and FoM (mJ×mm2/Gbps) among BVAP, BVAP-S, CAMA, eAP, and CA, all normalized to CA values. The absolute
values of CA metrics are annotated in the figures. Lower values denote better performance for area, energy per symbol, power,
and FoM, while higher values are better for compute density and throughput. (SpamA. is the abbreviation of SpamAssassin.)

and counting-NFA [2] reduce memory requirements by DFAs
and NFAs, respectively. [42] uses counting automata to han-
dle counting, which is then converted into deterministic
counting-set automata. [17] employs nondeterministic counter
automata (NCAs), using counter ambiguity to separate sim-
ple and complex cases of counting. [18] proposes nondeter-
ministic bit vector automata (NBVAs), a convenient alterna-
tive to NCAs for specifying regex matching algorithms. This
work builds upon NBVAs, presenting a novel algorithm to
transform NBVAs into AH-NBVAs for efficient hardware im-
plementations. Lookaround assertions, which can succinctly
encode certain kinds of counting, are considered in [24].
Meanwhile, various hardware platforms have been ex-

plored for regular pattern matching. Several works imple-
ment efficient regex matching algorithms on GPUs [5, 21,
22, 46, 51]. However, irregular and unpredictable memory
access on GPU restricts the achievable energy efficiency and
throughput. Various ASIC accelerators have been proposed
for regex matching [1, 10, 15–17, 20, 23, 30, 31, 37, 39, 41],
but with limited support for bounded repetitions. Moreover,

FPGAs have also been studied for regular pattern match-
ing [3, 7, 8, 26, 35, 47, 48, 50], whose performance and scala-
bility are commonly limited by routing congestion.

10 Conclusion
We present BVAP, a software-hardware co-designed Bit Vec-
tor Automata Processor for efficient regular pattern match-
ing. It is based on a novel hardware-friendly model AH-
NBVA, which extends NFAs with bit vectors. AH-NBVAs
facilitate energy- and memory- efficient matching of regexes
with the challenging construct of bounded repetition. The
BVAP hardware employs a specialized Bit Vector Module to
support bit vector processing efficiently. Through cross-stack
co-design, BVAP achieves higher efficiency, smaller area, and
higher compute density across real-world benchmarks, over
state-of-the-art automata accelerators.

Acknowledgments
This work is supported by the National Science Foundation
(NSF) under grants No.2313062 and No.2146476.

164

BVAP: Energy and Memory Efficient Automata Processing for Regular Expressions ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

References
[1] Ricardo A. Baeza-Yates and Gaston H. Gonnet. Efficient text search-

ing of regular expressions. In Giorgio Ausiello, Mariangiola Dezani-
Ciancaglini, and Simonetta Ronchi Della Rocca, editors, Automata,
Languages and Programming, pages 46–62, Heidelberg, 1989. Springer.

[2] Michela Becchi and Patrick Crowley. Extending finite automata to
efficiently match Perl-compatible regular expressions. In Proceedings
of the 2008 ACM CoNEXT Conference, CoNEXT ’08, New York, NY,
USA, 2008. ACM.

[3] Joao Bispo, Ioannis Sourdis, Joao M. P. Cardoso, and Stamatis Vas-
siliadis. Regular expression matching for reconfigurable packet in-
spection. In 2006 IEEE International Conference on Field Programmable
Technology, pages 119–126, USA, 2006. IEEE.

[4] Chunkun Bo, Vinh Dang, Elaheh Sadredini, and Kevin Skadron. Search-
ing for potential gRNA off-target sites for CRISPR/Cas9 using automata
processing across different platforms. In 2018 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA), pages
737–748. IEEE, 2018.

[5] Niccolo’ Cascarano, Pierluigi Rolando, Fulvio Risso, and Riccardo Sisto.
iNFAnt: NFA pattern matching on GPGPU devices. ACM SIGCOMM
Computer Communication Review, 40(5):20–26, 2010.

[6] Matheus Cavalcante, Fabian Schuiki, Florian Zaruba, Michael
Schaffner, and Luca Benini. Ara: A 1-ghz+ scalable and energy-efficient
risc-v vector processor with multiprecision floating-point support in
22-nm fd-soi. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 28(2):530–543, 2020.

[7] Milan Ceška, Vojtech Havlena, Lukáš Holík, Jan Korenek, Ondrej
Lengál, Denis Matoušek, Jirí Matoušek, Jakub Semric, and Tomáš
Vojnar. Deep packet inspection in FPGAs via approximate nondeter-
ministic automata. In 2019 IEEE 27th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), pages
109–117. IEEE, 2019.

[8] Jian Chen, Xiaoyu Zhang, Tao Wang, Ying Zhang, Tao Chen, Jiajun
Chen, Mingxu Xie, and Qiang Liu. Fidas: Fortifying the cloud via com-
prehensive FPGA-based offloading for intrusion detection: Industrial
product. In Proceedings of the 49th Annual International Symposium on
Computer Architecture, ISCA ’22, page 1029–1041, New York, NY, USA,
2022. Association for Computing Machinery.

[9] ClamAV. ClamAV - open source antivirus engine. Available at https:
//www.clamav.net/, 2023. [Online; Accessed 17 July, 2023].

[10] Paul Dlugosch, Dave Brown, Paul Glendenning, Michael Leventhal,
and Harold Noyes. An efficient and scalable semiconductor architec-
ture for parallel automata processing. IEEE Transactions on Parallel
and Distributed Systems, 25(12):3088–3098, 2014.

[11] Patrick C. Fischer, Albert R. Meyer, and Arnold L. Rosenberg. Counter
machines and counter languages. Mathematical Systems Theory,
2(3):265–283, 1968.

[12] Apache Software Foundation. Apache Spamassassin. Available at
https://spamassassin.apache.org/, 2022. [Online; Accessed 17 July,
2023].

[13] Wouter Gelade, Marc Gyssens, and WimMartens. Regular expressions
with counting: Weak versus strong determinism. In Mathematical
Foundations of Computer Science 2009, pages 369–381, Heidelberg, 2009.
Springer.

[14] Victor Mikhaylovich Glushkov. The abstract theory of automata.
Russian Math. Surveys, 16(5):1–53, 1961.

[15] Vaibhav Gogte, Aasheesh Kolli, Michael J. Cafarella, Loris D’Antoni,
and Thomas F. Wenisch. HARE: Hardware accelerator for regular
expressions. In 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 1–12. IEEE, 2016.

[16] Yi Huang, Zhiyu Chen, Dai Li, and Kaiyuan Yang. CAMA: Energy
and memory efficient automata processing in content-addressable
memories. In 2022 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 25–37, New York, NY, USA, 2022.

IEEE.
[17] Lingkun Kong, Qixuan Yu, Agnishom Chattopadhyay, Alexis

Le Glaunec, Yi Huang, Konstantinos Mamouras, and Kaiyuan Yang.
Software-hardware codesign for efficient in-memory regular pattern
matching. In Proceedings of the 43rd ACM SIGPLAN International Con-
ference on Programming Language Design and Implementation, PLDI
2022, pages 733–748, New York, NY, USA, 2022. ACM.

[18] Alexis Le Glaunec, Lingkun Kong, and Konstantinos Mamouras. Reg-
ular expression matching using bit vector automata. Proceedings of
the ACM on Programming Languages, 7(OOPSLA1), 2023.

[19] Marzieh Lenjani and Mahmoud Reza Hashemi. Tree-based scheme for
reducing shared cache miss rate leveraging regional, statistical and
temporal similarities. IET Computers & Digital Techniques, 8(1):30–48,
2014.

[20] Hongyuan Liu, Mohamed Ibrahim, Onur Kayiran, Sreepathi Pai, and
Adwait Jog. Architectural support for efficient large-scale automata
processing. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 908–920, New York, NY, USA, 2018.
IEEE.

[21] Hongyuan Liu, Sreepathi Pai, and Adwait Jog. Why GPUs are slow
at executing NFAs and how to make them faster. In Proceedings of
the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’20, pages
251–265, New York, NY, USA, 2020. ACM.

[22] Hongyuan Liu, Sreepathi Pai, and Adwait Jog. Asynchronous automata
processing on GPUs. Proc. ACM Meas. Anal. Comput. Syst., 7(1), mar
2023.

[23] Jan Van Lunteren, Christoph Hagleitner, Timothy Heil, Giora Biran,
Uzi Shvadron, and Kubilay Atasu. Designing a programmable wire-
speed regular-expression matching accelerator. In 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 461–
472, New York, NY, USA, 2012. IEEE.

[24] Konstantinos Mamouras and Agnishom Chattopadhyay. Efficient
matching of regular expressions with lookaround assertions. Proceed-
ings of the ACM on Programming Languages, 8(POPL), 2024.

[25] Pcre syntax. Available at https://www.pcre.org/original/doc/html/
pcrepattern.html, 2023. [Online; Accessed 18 July, 2023].

[26] Reza Rahimi, Elaheh Sadredini, Mircea Stan, and Kevin Skadron. Grape-
fruit: An Open-Source, Full-Stack, and Customizable Automata Pro-
cessing on FPGAs. In 2020 IEEE 28th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), pages
138–147, New York, NY, USA, May 2020. IEEE.

[27] RegexLib. Regular expression Library. Available at https://regexlib.
com/, 2023. [Online; Accessed 17 July, 2023].

[28] Martin Roesch. Snort - lightweight intrusion detection for networks.
In Proceedings of the 13th USENIX Conference on System Administration,
LISA ’99, page 229–238, USA, 1999. USENIX Association.

[29] Indranil Roy and Srinivas Aluru. Discovering motifs in biological se-
quences using the Micron Automata Processor. IEEE/ACM Transactions
on Computational Biology and Bioinformatics, 13(1):99–111, 2016.

[30] Elaheh Sadredini, Reza Rahimi, Marzieh Lenjani, Mircea Stan, and
Kevin Skadron. Impala: Algorithm/architecture co-design for in-
memory multi-stride pattern matching. In 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages
86–98, 2020.

[31] Elaheh Sadredini, Reza Rahimi, Vaibhav Verma, Mircea Stan, and Kevin
Skadron. eAP: A scalable and efficient in-memory accelerator for
automata processing. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO ’52, pages 87—-
99, New York, NY, USA, 2019. ACM.

[32] Christian J. A. Sigrist, Lorenzo Cerutti, Edouard de Castro, Petra S.
Langendijk-Genevaux, Virginie Bulliard, Amos Bairoch, and Nicolas
Hulo. PROSITE, a protein domain database for functional characteriza-
tion and annotation. Nucleic Acids Research, 38(suppl_1):D161–D166,

165

https://www.clamav.net/
https://www.clamav.net/
https://spamassassin.apache.org/
https://www.pcre.org/original/doc/html/pcrepattern.html
https://www.pcre.org/original/doc/html/pcrepattern.html
https://regexlib.com/
https://regexlib.com/

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Z. Wen, L. Kong, A. L. Glaunec, K. Mamouras, and K. Yang

2009.
[33] Randy Smith, Cristian Estan, and Somesh Jha. XFA: Faster signature

matching with extended automata. In Proceedings of the 2008 IEEE
Symposium on Security and Privacy, SP ’08, page 187–201, USA, 2008.
IEEE Computer Society.

[34] Snort. Snort - network intrusion detection & prevention system. Avail-
able at https://www.snort.org/, 2023. [Online; Accessed 17 July, 2023].

[35] Ioannis Sourdis, Joao Bispo, Joao MP Cardoso, and Stamatis Vassiliadis.
Regular expression matching in reconfigurable hardware. Journal of
Signal Processing Systems, 51(1):99–121, 2008.

[36] Nigel Stephens, Stuart Biles, Matthias Boettcher, Jacob Eapen, Mbou
Eyole, Giacomo Gabrielli, Matt Horsnell, Grigorios Magklis, Alejandro
Martinez, Nathanael Premillieu, Alastair Reid, Alejandro Rico, and Paul
Walker. The arm scalable vector extension. IEEE Micro, 37(2):26–39,
2017.

[37] Arun Subramaniyan, Jingcheng Wang, Ezhil R. M. Balasubramanian,
David Blaauw, Dennis Sylvester, and Reetuparna Das. Cache automa-
ton. In Proceedings of the 50th Annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO-50 ’17, page 259–272, New York,
NY, USA, 2017. ACM.

[38] Suricata. Suricata - open source intrusion detection and prevention
engine. Available at https://suricata.io/, 2023. [Online; Accessed 17
July, 2023].

[39] Prateek Tandon, Faissal M Sleiman, Michael J Cafarella, and Thomas F
Wenisch. HAWK: Hardware support for unstructured log processing.
In 2016 IEEE 32nd International Conference on Data Engineering (ICDE),
pages 469–480, New York, NY, USA, 2016. IEEE.

[40] Ken Thompson. Programming techniques: Regular expression search
algorithm. Communications of the ACM, 11(6):419–422, 1968.

[41] N. Tuck, T. Sherwood, B. Calder, and G. Varghese. Deterministic
memory-efficient string matching algorithms for intrusion detection.
In IEEE INFOCOM 2004, volume 4, pages 2628–2639 vol.4, New York,
NY, USA, 2004. IEEE.

[42] Lenka Turoňová, Lukáš Holík, Ondřej Lengál, Olli Saarikivi, Mar-
gus Veanes, and Tomáš Vojnar. Regex matching with counting-set
automata. Proceedings of the ACM on Programming Languages, 4(OOP-
SLA), 2020.

[43] VirusTotal. YARA: The pattern matching swiss knife for malware re-
searchers. Available at https://virustotal.github.io/yara/, 2023. [Online;
Accessed 17 July, 2023].

[44] Jack Wadden, Vinh Dang, Nathan Brunelle, Tommy Tracy II, Deyuan
Guo, Elaheh Sadredini, Ke Wang, Chunkun Bo, Gabriel Robins, Mircea
Stan, and Kevin Skadron. ANMLZoo: A benchmark suite for exploring
bottlenecks in automata processing engines and architectures. In 2016
IEEE International Symposium on Workload Characterization (IISWC),
pages 1–12. IEEE, 2016.

[45] Jack Wadden, Tommy Tracy, Elaheh Sadredini, Lingxi Wu, Chunkun
Bo, Jesse Du, Yizhou Wei, Jeffrey Udall, MatthewWallace, Mircea Stan,
and Kevin Skadron. AutomataZoo: A modern automata processing
benchmark suite. In 2018 IEEE International Symposium on Workload
Characterization (IISWC), pages 13–24, New York, NY, USA, 2018. IEEE.

[46] Yuguang Wang, Robbie Watling, Junqiao Qiu, and Zhenlin Wang.
GSpecPal: Speculation-centric finite state machine parallelization on
GPUs. In 2022 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 481–491, New York, NY, USA, 2022. IEEE.

[47] Ted Xie, Vinh Dang, Jack Wadden, Kevin Skadron, and Mircea Stan.
REAPR: Reconfigurable engine for automata processing. In 2017 27th
International Conference on Field Programmable Logic and Applications
(FPL), pages 1–8, New York, NY, USA, 2017. IEEE.

[48] Yi-Hua E. Yang, Weirong Jiang, and Viktor K. Prasanna. Compact ar-
chitecture for high-throughput regular expression matching on FPGA.
In Proceedings of the 4th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, ANCS ’08, page 30–39, New
York, NY, USA, 2008. ACM.

[49] Fang Yu, Zhifeng Chen, Yanlei Diao, T. V. Lakshman, and Randy H.
Katz. Fast and memory-efficient regular expression matching for deep
packet inspection. In Proceedings of the 2006 ACM/IEEE Symposium on
Architecture for Networking and Communications Systems, ANCS ’06,
pages 93–102, New York, NY, USA, 2006. ACM.

[50] Zhipeng Zhao, Hugo Sadok, Nirav Atre, James C. Hoe, Vyas Sekar,
and Justine Sherry. Achieving 100gbps intrusion prevention on a
single server. In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pages 1083–1100. USENIX Association,
November 2020.

[51] Yuan Zu, Ming Yang, Zhonghu Xu, LinWang, Xin Tian, Kunyang Peng,
and Qunfeng Dong. GPU-based NFA implementation for memory
efficient high speed regular expression matching. In Proceedings of the
17th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’12, page 129–140, New York, NY, USA, 2012.
ACM.

166

https://www.snort.org/
https://suricata.io/
https://virustotal.github.io/yara/

