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Abstract

Regular pattern matching is essential for applications such as text
processing, malware detection, network security, and bioinformat-
ics. Recent in-memory automata processors have significantly ad-
vanced the energy and memory efficiency over conventional com-
puting platforms. However, these processors are typically optimized
only for one type of automata, limiting their capability to efficiently
support regex processing under diverse real-world workloads. This
paper presents RAP, the first reconfigurable in-memory automata
processor for efficient regular pattern matching across diverse work-
loads. It supports Nondeterministic Finite Automata (NFA), Nonde-
terministic Bit Vector Automata (NBVA), and Linear NFA (LNFA)
through reconfigurable architecture and circuit designs, and a com-
piler for translation. RAP is evaluated in 28nm CMOS PDK, achiev-
ing 1.2-1.5% higher energy efficiency and 1.3-2.5x higher compute
density compared to SotA automata processors for NFA (CA and
CAMA) over diverse real-world benchmarks. It also achieves 1.6X
higher compute density and similar energy efficiency as BVAP, a
SotA optimized for bounded repetitions. Finally, RAP is >100X and
>1000x more energy efficient than SotA GPU and CPU solutions.
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1 Introduction

Regex matching is a core computational primitive in the application
domains of network security [54], data mining [38], and bioinfor-
matics [4, 34]. For example, to monitor the traffic on a 10 Gb/s
high-speed network with a single flow, Snort network intrusion
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Figure 1: The proportions of regexes that can be represented
by NFA, NBVA, and LNFA models in seven benchmarks.

detection systems used more than 57% of CPU resources [17] while
regex matching takes up to 90% of the time in network monitor-
ing [54]. To enable network monitoring on edge devices, higher
energy and area efficiency are demanded due to their restricted
power budgets. However, existing solutions on edge require over 2
mW when using a transceiver with a data rate of 250 kbps [1]. For
the emerging bioinformatic applications, the latest sequencing ma-
chine produces results at over 10GB/s, the speed and cost of which
are exponentially improving [11]. To meet the growing demand for
regex matching in clouds and edges, it is essential to improve the
energy/area efficiency and throughput of the processing system.
Most specialized hardware accelerators [10, 18, 36, 37, 41] per-
form regex matching with nondeterministic finite automata (NFAs)
to take advantage of the inherent parallelism of hardware and the
memory efficiency of NFAs. They encode the NFA character classes
(CCs) inside the memory and use a crossbar switch to realize the
transfer function. A downside of this approach is that it does not
take advantage of the redundancy of CCs or the high sparsity in the
switch, thus wasting energy and memory resources. Some accelera-
tors support approximate matching for specific pattern matching ap-
plications, such as DNA classification [13, 14, 16] and local sensitive
hashing [27, 32]. However, these methods lack the expressiveness of
regex. Most FPGA implementations are also based on NFA simula-
tion [5, 7, 8, 30, 35, 49, 53, 56], but their throughput is limited by rout-
ing congestion. GPU-based accelerators [2, 6, 25, 26, 44, 48, 55, 57]
are also based on NFA simulation algorithms, which can give rise
to irregular memory accesses and thus lower throughput.
Classical regular expressions can be translated into NFAs with
a number of states linear in the size of the expression. A common
feature in regexes is the r{m, n} construct, called bounded repeti-
tion, that is used to describe the repetition between m and n times
of the pattern r. To execute such regexes using an NFA, we need to
unfold the bounded repetition. For instance, r{n, n} is unfolded into
r™ = r...r where r is repeated n times. The unfolding of r{m, n}
increases the size of the pattern by a factor ®(n). Instead of un-
folding, previous work on CPU [22] and in ASIC [20, 52] use an
automaton called nondeterministic bit vector automaton (NBVA)
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to support regexes with bounded repetitions efficiently. In NBVAs,
control states can have bit vectors to keep track of the number of
repetitions of the bounded repetitions. These ASICs use additional
counter or bit vector modules to efficiently support regexes with
bounded repetitions, whereas a significant number of regexes do
not contain bounded repetitions. They also do not take advantage
of the high sparsity of the routing switch for NFAs that have a linear
structure qo, q1, - . ., gn—1 Where each transition is from a state g;
to a neighboring state ;1. We call them Linear NFAs (LNFA). It is
known that those regexes can be executed efficiently with the Shift-
And [3] algorithm, which is a bit-parallel algorithm with very high
throughput that is used in the software matcher Hyperscan [51],
as well as in the GPU matcher of HybridSA [23].

By analyzing the compositions of seven benchmarks from real-
world applications in Fig. 1, we have found that, for different bench-
marks, the proportion of regexes that can be simulated with NBVAs,
LNFAs, and NFAs varies tremendously. In the RegexLib dataset,
most regexes cannot be simulated with NBVAs or LNFAs and are
simulated with NFAs instead. In contrast, more than 80% regexes in
the ClamAV dataset have bounded repetitions and can be efficiently
supported with NBVAs. For the Prosite and SpamAssassin datasets,
the majority of regexes can be translated into LNFAs. These obser-
vations motivate a reconfigurable hardware solution that efficiently
supports different automata models for diverse workloads.

To efficiently support various types of regexes for different appli-
cations, we present the first-of-its-kind Reconfigurable Automata
Processor (RAP), which effectively processes various regex classes
while maintaining minimal controller overhead compared to hard-
ware specialized for a single regex class. While add-on modules to
support bit vector and/or counter in regexes with large bounded
repetitions could drastically reduce area and energy [20, 52], these
dedicated add-ons suffer from low flexibility and underutilization
facing diverse workloads. Since all components needed to simulate
NFA, NBVA, and LNFA can be stored or encoded within 8T-SRAMs
that dominate the chip area (76% in ), we reuse the 8T-SRAM with
different control flows to efficiently support all three modes. Specif-
ically, RAP (1) unifies the storage of CCs and bit vectors, (2) dynam-
ically allocates hardware resources based on workload demands,
and (3) integrates the transfer function encoding scheme and bit
vectors processing schemes in local switches. With these optimiza-
tions, NBVA processing in RAP takes 73% lower energy and 75%
smaller area compared to baseline NFA processing.

To support the other common regex model, LNFA, we exploit the
Shift-And algorithm [3] well-suited for LNFA’s linear transfer func-
tions, and its efficient implementation using the same in-memory
fabric. The transfer function is implemented by a repurposed vector
rather than a crossbar to reduce area and energy. We fully utilize
the CAM and local switches to store CCs and suggested a binning
method to process multiple LNFA together to further reduce en-
ergy. As such, LNFA processing in RAP achieves 79% lower energy
consumption compared to processing as NFA.

In summary, our main contributions are the following:

e We designed RAP, the first reconfigurable automata proces-
sor that supports NFA, NBVA, and LNFA models with little
overhead, leading to high energy efficiency and low memory
usage for all types of regex matching workloads.
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e We realized unified storage for CCs and bit vectors and de-
vised an encoding scheme to process bit vectors in local
switches to handle NBVA with RAP design.

e We implemented LNFA with the Shift-And algorithm to com-
press its transfer function and propose a binning method to
decrease the energy consumption of LNFA further.

e We developed a regex-to-hardware compiler for high-level
programming of the hardware. This compiler chooses the
best automata model for each regex and programs it on RAP.

e RAP is evaluated with a 28nm CMOS process across seven
real-world benchmarks. RAP improves compute density,
measured as throughput per unit area, by 1.6x compared to
BVAP while maintaining a similar energy efficiency. It also
enhances compute density by 1.3X, and 2.5X over CAMA,
and CA, while offering 1.5 and 1.2X higher energy effi-
ciency. RAP achieves >100x and >1000X greater energy effi-
ciency compared to GPU and CPU solutions. It also improves
throughput by 11X over SotA FPGA solutions.

2 Preliminaries
2.1 Automata Theory

Regexes are a widely used formalism for describing regular patterns.
For a finite alphabet X, regexes over ¥ are given by the grammar
ru=celo|(rlr) | r-r|r* | r{mn}, where o C ¥ is a predi-
cate over the alphabet and m, n are natural numbers with m < n.
We also use the term character class to refer to a predicate over 2.
The predicate ¥ contains all symbols in the alphabet, which corre-
sponds to the notation . in PCRE-style syntax [29]. The grammar
of regexes is often extended with more features for convenience
and succinctness: r? indicates that the pattern r is optional and r*
describes the repetition of r at least once. The expression r{m, n}
is called a bounded repetition and describes the repetition of r from
m to n times. We write r{m} for r{m, m}. The pattern r{m, n} can
be translated using concatenation and ? but is exponentially more
succinct. The naive approach for dealing with bounded repetition is
to unfold it. For example, r{n} is unfolded into r - r - - - r (n-fold con-
catenation) and results in an NFA of size linear in n (and therefore
can produce a DFA of size exponential in n).

A regex can be converted to an NFA that recognizes the same
language using the construction of Thompson [43] or Glushkov [15].
We adopt the latter because it results in ¢-free automata that are also
homogeneous, i.e., all incoming transitions of a state are labeled with
the same character class. Let X be a finite alphabet. A homogeneous
NFA with input alphabet X is a tuple A = (Q, L, A, I, F), where Q is
a finite set of (control) states, L : Q — P () is a labeling function
that maps each state to a character class, A : Q — P(Q) is the
transition relation, I C Q is the set of initial states, and F C Q is the
set of final states, where P is the powerset operation.

Example 2.1. Consider the regex r = a([bc]|b.*d) . The follow-
ing homogeneous automaton recognizes the language of r.

q1: [bcl]
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The automaton contains 5 states: qo, g1, 2, g3 and q4, where qo is
the initial state (represented with an incoming edge) and states
q1 and g4 are final states (represented with a double circle). As
the automaton is homogeneous, we label the states instead of the
transitions. For instance, g4 : d means that all incoming edges to
state g4 (from g1 and g¢3) are labeled with character d.

Nondeterministic bit vector automata (NBVAs) [20, 22] ex-
tend NFA with bit vectors (which correspond to sets of counter
values in the closely related model of nondeterministic counter
automata or NCAs). In an NBVA, a computation involves not only
transitions between control states but also the use of a finite num-
ber of registers that hold nonnegative integers. NBVA is a natural
execution model for regexes with bounded repetitions. The config-
uration of the NBVA specifies for each control state g a bit vector
to represent the set of counter values that are in the control state g.

An NBVA is a tuple (Q,w, A, I, F), where Q is a finite set of
(control) states, and w : Q — {1,2,...} is a function that maps each
state to a strictly positive integer, corresponding to the counter
values for a given state. The transition relation A contains finitely
many transitions of the form (p, o, g, §), where p is the source state,
o C Yisapredicate over the alphabet (i.e., a character class), q is the
destination state, and 0 : BY(®) — BWD is the update function
for the bit vector. The initialization function I specifies an initial
vector I(q) : B™(9) for each state g, and the finalization function F
specifies a function F(q) : B¥(9) — B for each state g. A state g
is initial if I(q) # 0,,(4), Where 0,,(4) is the zero vector of length

w(q). A state q is final if F(q)(v) = 1 for some v € Bvw(@),

Example 2.2. Consider the regex r = a.*bc{n} where n > 1. The
following NBVA recognizes the language of r.

c /o [1,0,--,0]

a b o[n] =1
~@©>@—"®@ a2
o c / shft(o)

The NBVA has 4 states: qo, q1, g2 and q3. We write “g3 : n” to indicate
that w(gs) = n, i.e., g2 has a bit vector of size n. States qo, g1 and
q2 are not annotated because they do not carry a bit vector. We
annotate each transition p — ¢ with an expression of the form o/ 0,
where o is a predicate over X, and 6 is a function used to compute
the bit vector of q from the bit vector of p. We use v to represent the
bit vector of p. In more details, we write [1,0,...,0] to denote the
bit vector that is zero everywhere, except for index 0 that is set to 1.
We write "v[n] = 1" to denote the function checking that the n-th bit
of the bit vector v is set to 1. We denote as "shft(v)" the shift left by
one operation over a bit vector v, e.g., shft([1,0,1,0]) = [0, 1,0, 1].

Linear NFA (LNFA) is a class of homogeneous NFAs where the
states can be placed in order qo . .. g in a line and each transition
is from state q; to state g;+1. We call them LNFAs because the
automata are structured like a line.

Example 2.3. Consider the regex r = a[bc].d?. The following
LNFA recognizes the language of r.

—{q: a q1:[bC:|:| (q2: - ) (q:;d)

The LNFA has 4 states: qo, q1, q2 and g3. Each state is labeled
with a character class because an LNFA is also a homogeneous
automaton. Note that all the transitions are between states g; and
their neighboring state gij+1 : @0 — q1,91 — g2 and g2 — g3.
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Input a b c
next 0000 0001 0011 0101
labels | 0000 0001 0010 0100
states | 0000 0001 0010 0100
output 0 0 0 1

Figure 2: Shift-And execution of LNFA for a[bc].d?

P z P b
(@ (@)1)=(@)HE)HE)—E)D)

(a) NFA for regex a(Za) {3}b constructed by unfolding

(b) Simplified Glushkov NFA for regex a(Za){3}b
v-[1,0,0] e v[3] =1
shft (o)

(c) Simplified NBVA for regex a(Za){3}b

. v

Figure 3: Automata constructed from the regex a(Za){3}b
(a(.a){33}b in PCRE syntax).

This structure enables a specialized bit-parallel algorithm, called
Shift-And [3], to accelerate the simulation of LNFA using efficient
bitwise operations. It consists of two steps: (1) the preprocessing of
the bit vector masks, and (2) the execution of the automaton with
shift-left, bitwise AND and bitwise OR instructions. We will use
the notation x,—1xp—2 ... x2 x1 X9 for an n-bit vector, where the
leftmost bit is the most significant and the rightmost bit is the least
significant. We often refer to bit vectors as bit masks in the context
of Shift-And, because they are used as OR masks or as AND masks.

Fig. 2 shows the execution of Shift-And for the LNFA a[bc].d?.
The initial (resp. final) mask is masklnitial = 0001 (resp.
maskFinal = 1100 ) and encodes the positions of the initial (resp.
final) states. In Shift-And, we keep character masks labels where
labels[ ¢ ] indicates the positions of states whose character class
matches letter c. We encode the set of active states (resp. next
active states) in the states (resp. next) bit vector where the ith bit
(starting from the right) set to "1" indicates that state g; is active.
Now, we go through the execution of Shift-And for LNFA a[bc].d?
over input abc. After consuming the character a, we start by per-
forming the transitions with next = (states < 1) OR maskInitial =
(0000 < 1)OR 0001 = 0001 . Then, we compute the active states
that match letter a with states = next AND labels[a] = (0001
AND 0001) = 0001 . This means that, after consuming letter a,
only state g is active. Then, we check if there is a match with the
boolean test ((states AND maskFinal) # 0000 ), which is equal to
false. So, there is no match. We perform the same steps for the next
letters b and c, and find a match after reading letter ¢ because
state g2 is active and is a final state.

2.2 In-memory Automata Processor

NFA Execution. SotA in-memory automata processors, such as
AP [10], CA [41], and CAMA [18], execute NFA through two in-
memory operations: state-matching and state-transition. To
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Figure 4: Conceptual diagrams of (a) CAMA and (b) BVAP;
and their configurations to match a(.a){33b.

explain their principles, consider matching the regex a(.a){33b,
which can be represented with NFA, NBVA, and LNFA models
shown in Fig. 3. To construct a basic NFA for this regex, a(.a){33}b
is expanded into a.a.a.ab. This NFA is also an LNFA by definition.
The Glushkov construction in Fig. 3(b) ensures that all transitions
entering a state are labeled with the same predicate.

Fig. 4(a) illustrates how CAMA, a recent automata processor
using CAMs for efficient state matching and the baseline of this
work, executes NFA matching. Same as other in-memory automata
processors, CAMA uses state-transition elements (STEs) to repre-
sent states in Fig 3(b). Each STE has two components: a character
class (CC) and a transfer function. CCs are stored in the CAM, and
the local switches encode the transfer function. If an STE (e.g., STE1
in Fig. 4(a)) connects to another STE (e.g., STE2), a dot with the
value of ‘1’ will be programmed to the corresponding crossing point.
During each processing cycle, the state-matching phase compares
the input character with all CCs, producing a match result stored in
the active vector. In the following state-transition phase, the active
vector passes through the transfer function in the switch network,
where a logic OR aggregation is naturally performed on each row.
In case the number of STEs within a tile is insufficient, global rout-
ing switches are included to support larger NFAs, the values of
which are merged with local routing results after aggregation. If
the aggregation result is ‘1’, the corresponding STE will become
available in the next cycle. We call a STE active if it is matched by
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an input element and is in an available state. STE1 in Fig. 4(a) is an
initial STE that is always available for all input. STES in Fig. 4(a) is
a reporting STE, which will report a match if it is activated.

Although NFAs can support all types of regexes in theory, unfold-
ing bounded repetition exponentially increases the number of STEs
and the size of routing switches, incurring significant memory and
energy costs. Meanwhile, AP-style in-memory automata processors
cannot fully exploit LNFA features, e.g., the compressed routing
switch RCB in [37] utilizes less than 5% of switches on LNFAs.
Efficient Support of Bounded Repetitions. BVAP [52] is a
recent accelerator that efficiently supports bounded repetitions
using NBVA model. To update the bit vector of a state in NBVA
mode, we manipulate the bits of the bit vector with actions such as
"shft(v)" (See Section 2.1). We call it a BV action. Fig. 4(b) shows the
conceptual diagram of BVAP. We refer to any STE that carries a bit
vector as a BV-STE. A BV-STE extends a standard STE in AP-style
processors with bit vector storage and a programmable BV action.
BVAP realizes these actions within an add-on module to CAMA
called Bit Vector Module (BVM). BVM includes a semi-parallel multi-
bit routing switch (MFCB). In Fig. 4(b), STEs 2a, 2b, 3, and 4 are
BV-STEs, which are activated by the BV-act signal from the active
vector. BVAP adds an event-driven bit-vector-processing phase
to standard state-matching and state-transition phases in CAMA
or other AP-style designs. During this phase, BVM performs BV
reading, routing, and action in a three-stage pipeline. The read
results generated in the bit-vector-processing phase, BV-read, are
fed back to the active vector, deactivating STEs with read failure.

BVAP was developed to support regexes with large bounds effi-
ciently. In our a(.a){33}b example, BVAP only needs O(1) STEs. In
BVAP, the size of the BV and the number of BVs inside the BVM are
constant, which severely limits its flexibility and utilization under
diverse tasks. Besides, even though BVM is worthy of its area in
dealing with regexes with large bounds, it is wasted when running
basic NFAs. Thus, deciding the number of BVs and BVMs on chip
faces a critical tradeoff between the maximum supported number
of BV-STEs and the compute density in diverse benchmarks.

3 Hardware Design of RAP

We design RAP to flexibly support NFA, NBVA, and LNFA mod-
els by locally reconfiguring a tile of AP-style hardware with little
overhead. We adopt CAMA [18] for basic NFA processing and pro-
pose new techniques to realize efficient reconfiguration for NBVA
and LNFA models. To support the NBVA model, we first design
a unified storage for both Bit Vectors (BVs) and CCs and a novel
encoding scheme for BV actions. Second, we illustrate the LNFA im-
plementation using the Shift-And algorithm, which is improved by
multi-LNFA binning. In the end, we present the system architecture
of RAP. Overall, RAP can dynamically allocate hardware resources
to NFA, NBVA, and LNFA automata models through reconfiguration
of CAMs and local switches, efficiently adapting to diverse work-
loads in real-world applications. It compresses bounded repetition
and linear transfer functions to save area and energy.

3.1 NBVA Mode

Unified Memory for Reconfigurable Modes. It has been shown
that 8T-SRAM can be repurposed as 8T-CAM for pattern matching
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Figure 5: Illustration of NBVA mode in RAP with an example
of matching regex b(a{7}|c{5})b. Circles in the local switch
mean the bits store ‘1’. The black and red lines indicate trans-
fer function encoding and BV actions encoding respectively.

through the encoding of data [24]. CAMA [18] exploits this circuit
technique to utilize the repurposed 8T-CAM for state matching,
where CCs of the regex are encoded and stored inside the CAM.
In addition, 8T-SRAM can function as BVs and execute actions
required by the NBVA model as well [52]. Therefore, both CCs and
BVs can be stored within the same 8T-CAM. The 8T-CAM works as
either CAM or BVs, according to the types of data being processed.
Because the CAM size is typically much larger than the size of the
BVs, we can dynamically allocate space to store multiple BVs in a
single CAM for varying workloads.

Dynamic allocation of columns of CAM to store either CCs or
BVs is shown in Fig. 5. For each BV, we choose the number of rows
utilized for the storage of bit vectors, which is called the depth of
the BV. The depth of BV determines the compression rate of the
bounded repetitions and the latency of the bit-vector-processing
phase. With a selected depth, we use minimal contiguous columns
of CAM that fit the size of the bit vector, which is called the width.
In Fig. 5, we assign two columns to the BVs of STE2, so its width is 2.
To support various widths of BVs, we use a BV-mask, a bitmap that
designates the storage type of each CAM column that is set during
deployment. We use a row-first mapping method to map BVs to a
CAM, as shown in Fig. 5. It divides a bit vector into multiple BV
words to facilitate semi-parallel routing. If a BV does not require all

rows assigned by its depth, it is aligned to the bottom of the BVs.

Additionally, the last BV word can be partially used as well. This
unified storage mechanism allows RAP to support BVs of varying
sizes and numbers within a tile, dynamically adapting to specific
workloads by reconfiguring the CAMs. By compressing bounded
repetitions into bit vectors, we decrease storage for identical CCs
in NFA mode and save energy during the state-matching phase.
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BV actions Encoding Scheme. For RAP, BVs are stored inside the
CAM, allowing the corresponding columns of the local switch to
be repurposed for functions other than transfer function encoding.
RAP reconfigures columns corresponding to the storage of BVs
for bit vector routing and BV actions. BVs are interconnected by
local switches through columns corresponding to BV storage. The
number of these columns matches the width of the BV, enabling
semi-parallel routing. The cross-point region in the local switch,
formed by BV connections, creates a matrix where BV actions can
be encoded using an alternative scheme, enabling reconfigurability.
In addition, different BV actions can be encoded in distinct regions
formed by BV connections to implement NBVA. The BV actions
supported and an example of the encoding scheme of BV actions
are shown in Fig. 5. For copy, the diagonal nodes of the cross-point
region are set to ‘1’ so that the BV word is routed identically to
its destinations. For shift, the last bit of a BV word is replaced by
auxiliary registers, which are then updated with the last bit of the
BV word. Next, the last bit of the BV word is routed to the position
of the first bit, while the remaining bits are right-shifted by one
through local switches. For set1 action, RAP needs to store an initial
vector in one column for each connected BV-STE because their
first-bit positions may differ due to alignment. Initial vectors are
directed to the first column of connected BVs during routing, setting
their first bit to ‘1. For read actions, the read result is combined
with the active vector to deactivate STEs with read failures.

To prevent the activation of BVs when they overflow, we incor-
porate an overflow checker in the BV actions encoding scheme. All
BV words perform bitwise-OR operations through BV routing to
detect if bit ‘1’ exists in the bit vector. The intermediate overflow
check values are stored in the auxiliary registers. After checking
the last BV word, overflow is detected if RAP finds all bits in the BV
are ‘0’. Then, we reset the corresponding bit of active vector to ‘0’ to
avoid unnecessary activation of BV-STEs and improve throughput.
Pipelining in Bit-Vector-Processing Phase. RAP performs state-
matching and state-transition in each cycle, but only activates CAM
columns containing CCs. When BV-STEs are triggered, RAP en-
ters the bit-vector-processing phase, and CAM works as BVs. The
pipeline of the bit-vector-processing phase is adopted from BVAP
[52], as illustrated in Section 2. First, a BV-word of each BV is read
and sent to the local switch. Second, the BV-word performs various
BV actions along the routing through the switch, and all the BV-
words forwarded to the same BV-STEs are aggregated. Finally, the
BV-words are sent back to CAM to update the BVs. This process
is repeated for a number of cycles equal to the depth to update
all BV-words. To simplify the control and reduce overhead, RAP
introduces several improvements.

To activate the bit-vector-processing phase, we need to identify
BV-STEs through metadata. To reduce storage, metadata about the
size of the BVs and the association between BVs and CCs is encoded
in the unused bit within the local switches. If an STE connects to
BV-STEs, we place ‘1’ at the cross-points formed by the CC of the
source STE and the BV of the destination STE. In this way, the
BV is activated whenever a BV-STE is activated along with its CC.
After generating the active vector, RAP uses the BV-mask to check
whether columns storing BVs are activated. If any BV is activated,
RAP starts the bit-vector-processing phase.
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For the action set1, we only need to store and route one column
of initial vectors for each BV. To reset the remaining BV columns
to zero, BV-STE with action setI only activates the first column of
the destination BVs during state transition. Then, the remaining
columns are automatically reset to ‘0’ along with inactive BVs. As
such, the energy and area for the BV-STEs is reduced with the set1
action compared to storing and routing the whole bit vector.

In RAP, the BVs of a tile are stored in one CAM, so they must
execute the same action in each cycle. For this reason, the BVs
in a tile must have the same read action and depth to minimize
latency overhead. For r(n) action, the CAM reads the bottom BV
words and selects the bit for the read result via local switches. For
rAll action, the CAM reads all words of the BVs and performs the
bitwise-OR operation on these words through RBLs. The latency
of the bit-vector-processing phase for BVs within the same tile is
identical since the depths of BVs are uniform.

Example 3.1. Fig. 5 shows a working instance of RAP for match-
ing b(a{7}|c{5})b in NBVA mode. The depth of BVs is set to 4,
and the read actions are r(7) and r(5). There are 4 STEs in total.
STE4 is a standard STE, while the other three STEs are BV-STEs.
Each Bit Vector occupies two columns based on its size and the
selected depth, so STE2 and STE3 each need three columns. The BV
of STE3 aligns its first bit to the second row because it only occupies
three rows in total. The actions of each BV-STE are programmed
in the local switches. STE1 is activated upon matching an input
b. Since STE1 triggers STE2 and STE3, it stores two initial vectors
within two columns. In the bit-vector-processing phase, two ini-
tial vectors are sent to STE2 and STE3, and their first bit is set to
‘1’. Then five consecutive ¢ characters are consumed, and each of
them works in a similar behavior. In step 1, input ¢ matches the
CC of STE3 via CAM as state matching. In step 2, the active vector
is sent to the local switch for state transition. STE3, activated by
the previous c, transits itself along with the corresponding BV to
the active states. Then, RAP performs a bitwise-AND operation
on the result of state-matching and state-transition and updates
the active vector. Meanwhile, the local controller detects that STE3,
which is associated with a BV, is active, prompting RAP to enter
the bit-vector-processing phase. In step 3, a BV-word is read from
the BV of STE3 and stored in the pipeline registers. In step 4, we
generate the shifted word with a shift action and update the word
through the local switch. More precisely, the first bit of the word is
sent from the 8" column to the 9" row, which is the second bit
of the shifted word. The second bit of the word is sent from the
9th column to the 8!" row as the first bit of the shifted word. Then,
the updated word after the local switch is the input word shifted
after performing the shift action. In step 5, we update the BV with
the updated word. Then, RAP repeats steps 3 to 5 until all of the
BV words are updated, before processing the next input symbol.
Overall, the BV of STES3 is shifted by 5 bits. Upon receiving the
sixth c, STE3 is shifted once more, and the BV is full of ‘0’s. At this
point, the overflow check confirms that STE3 has overflowed and
deactivates it for the next input. Consequently, when the 7! ¢ is
received, the bit-vector-processing phase has not started, as STE3
is now inactive. Then, input baaaaaa is fed to RAP, which fills the
BV of STE2. Upon receiving the 7! character a, RAP reads the 4/%
word of the BV. The 7¢" bit of STE2’s BV is routed to STE4, making
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Figure 6: Example of LNFA module for a.[bc] in RAP using
CAM and a local switch.

it available for the next input character. Finally, the reporting state
STE4 is activated after reading the input character b, and a match
report is generated. For illustration purposes, this example reduces
the rows of the CAM from 32 to 5.

3.2 LNFA Mode

Shift-And Matching. The structure of LNFA only allows transi-
tion between states g; to its neighbor state g;+1, which translates
into a very sparse local switch full of ones on the diagonal and zeros
everywhere else. Thus, we designed a modified version of the Shift-
And algorithm on the hardware to compress the transition function.
An example of the Shift-And execution is presented in Fig. 6. Com-
pared to the classical Shift-And, we keep the states to represent the
set of active states, but we compute labels from the STE CC instead
of storing it directly. We first match the input character to all CCs
of the LNFA and then compute the labels from the CCs output. In
practice, if the CC of STE; matches the input character, we set ’1’
at position i in labels (starting from the left). Then, we perform the
transitions with next = (states > 1)OR 10...0, and update states
with states = next AND labels, which keeps the states matching the
current input symbol. When statesAND 0...01 # 0", where n is
the number of states in LNFA, we report a match. Compared to the
classical Shift-And, this version assumes that there is a single initial
state go and a single final state g,—1. Various encoding schemes
can be applied to character classes, such as the one-hot encoding
scheme or the multi-zero prefix encoding scheme [18].

Implementation of LNFA. In RAP, we implement the Shift-And
matching for LNFA, which closely resembles the state-matching
process, so that we can store codes of CCs in the CAM and states in
the active vector. We encode some CCs into multiple 32-bit codes
with the multi-zero prefix encoding scheme. Each of these CCs
occupies multiple columns of the CAM, whose active state needs
to be shifted multiple bits per character. This disrupts the uniform
bitwise shift operation of the Shift-And algorithm and requires an
FCB to realize irregular routing. To address this, we require all CCs
in an LNFA mapped to the CAM to be encodable within a single
32-bit code using the multi-zero prefix encoding scheme, and 84%
of LNFAs satisfy this requirement in practice. Under this condition,
the transfer function of LNFA can be encoded into a chain that is
implemented using a vector rather than a crossbar, which reduces
the footprint from ©(n?) to ©(n). LNFAs mapped to the CAM and
active vector are shown in Fig. 6. We devise a specialized routing



RAP: Reconfigurable Automata Processor

LNFAL: abcd LNFA3: efgh [J Regionl 1 Tile wio
‘ LNFA2: ABCD LNFA4: EFG [J Region2 always-on state
Tilel Tile2 Tilel _
[a[b]c[d][A[B]c]D] | [a]p]A]B Binl
Tile3 Tile4 T
[elfTo[h][ETFIC | | [eLfIETF]{ I [0 |Bn2
(a) H (b)

Figure 7: Mapping of 4 LNFAs (a) without and (b) with the
binning scheme. STEs colored in red are the initial states.

path for the active vector to facilitate bitwise shift. The Active
Vector right-shifts by one bit each cycle, controlling which columns
remain active for the next input character. This approach reduces
energy consumption during matching compared to activating all
columns in NFA mode. In the example shown in Fig. 6, STE1 is
an initial state, which keeps active for matching input characters
working as masklnitial. In the first cycle, input a matches STE1
and STE2 via CAM, generating labels as 110 . The next, 100, only
activates STE1. Therefore, the states stored in the active vector is
100 . In the next cycle, states right shifts 1 bit and functions as next.
Hence, input b matches active STE2 and unactive STE3, updating
states to 010 . Similarly, when input ¢ arrives, it matches the active
STE3, triggering a match report.

Processing LNFA with CAMs leaves local switches unused, and
CAMs cannot process some LNFAs. To address this, we reconfigure
local switches for LNFAs by employing a one-hot encoding scheme,
ensuring all LNFAs are mapped effectively. With this scheme, all
CCs have a uniform code length of 256 bits, matching the alphabet
size. Each one-hot code is stored across two local switch columns.
The MSB of the 8-bit input character is used to select the local
switch’s output, while the remaining 7 bits are encoded into a
128-bit one-hot code that activates 1 row of the local switch. The
pipeline buffer used for NBVA mode is repurposed to store states
with a routing path that enables bitwise shift operations. Therefore,
the LNFA mode of RAP decreases the memory usage compared to
the NFA mode. In the meantime, RAP utilizes either CAM or a local
switch for state matching and reconfigures the active vector for
state transition. Therefore, RAP can process one input character
per cycle in LNFA mode, matching the throughput of NFA mode.
Multi-LNFA Binning. We find that if a tile does not have any
initial state, it can be power-gated when none of its states is acti-
vated by global routing. For LNFAs, only the first STE is an initial
state, so we can group multiple LNFAs as a bin and map them in a
regex-sliced manner, as shown in Fig. 7(b). Here, all initial states
within the bin are placed in a single tile, allowing the remaining
tiles storing the bin to stay power-gated when the initial states do
not match the input character. Otherwise, all tiles contain an initial
state and perform state-matching every cycle, as shown in Fig. 7(a).
Overall, binning consolidates the initial states to a restricted region
and leaves more tiles idle, leading to lower energy consumption.

Since the active vector only supports bitwise shift, LNFAs of
the bin are mapped regex-sliced across tiles and in a region-based
manner within the tile. As shown in Fig. 7(b), mapping Bin1, which
contains LNFA1 and LNFAZ2, across two tiles requires each LNFA
to be split into two parts. Then, we place the first two STEs of
both LNFAs of the bin in Tilel, while the third and fourth STEs
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are positioned in Tile2. To organize these LNFAs within a tile, the
tile is divided into multiple regions, with the number of regions
matching the number of LNFAs in the bin. Then we map LNFA1 to
Regionl and LNFA2 to Region2. If the sizes of LNFAs are different
within a bin, we treat them as the maximum size LNFA inside the
bin, leaving partial regions unused.

Each tile can only support bins with an identical number of
LNFAs because tiles need to be split into constant regions for map-
ping. In addition, only one STE within the LNFA will connect to a
corresponding STE in another tile if it spans multiple tiles, ensur-
ing a consistent global routing pattern. We devised a ring routing
network specialized for LNFA global routing and power-gated the
global switch. The width of the ring needed for global routing is
determined by the number of LNFAs inside the bin. The ring con-
nects adjacent tiles with global wires over a short distance, which
introduces low area and energy overhead.

3.3 System Architecture of RAP

The overall architecture of RAP, as shown in Fig. 8, involves a
three-level hierarchy: bank, array, and tile. Each bank includes four
arrays and I/O, while each array consists of sixteen tiles and a
256%256 fully-connected crossbar (FCB) as a global switch. The di-
mension of the global switch for state transitions limits the number
of tiles inside an array. Although a larger global switch can connect
more tiles to support exceptionally large regexes, the quadratically
increasing global switch reduces the system energy and area ef-
ficiency. Each tile includes a 32x128 8T-SRAM based CAM and a
128%128 FCB as a local switch. The capacities of the CAM and local
switch are decided under a trade-off between the density of the
local switch and the global routing bandwidth allocated to each
tile. In the current tile design, 32 STEs can communicate with other
tiles through the global switch.

RAP tiles support NFA, NBVA, and LNFA modes. Each tile in
an array can be individually configured to any of the modes. To
avoid global routing complexity and overheads, communication
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between arrays is not supported in RAP. As such, RAP can support
regexes with up to 2048 STEs in NFA and LNFA modes. Through
design space exploration (See Section 5), we only support at most
32 LNFAs inside a bin for LNFA mode, so the width of the ring
is set to 64 bits. In NBVA mode, the columns of the CAM can be
randomly assigned to store either CCs or BVs, so the maximum size
of a single BV is 4064 bits. Meanwhile, RAP does not support the
transmission of bit vectors across tiles. Hence, BVs exceeding this
limit must be split into multiple vectors that conform to hardware
constraints. Therefore, RAP supports regexes with at most 64528
STEs after unfolding in NBVA mode.

To properly manage different operating modes across tiles, RAP
has a Global Controller to coordinate behavior throughout the array
and local controllers in each tile. The Global Controller decides the
enabling of the CAMs and local switches. The local controllers select
the data sent to CAMs and local switches and store the outputs in
registers. In NFA and LNFA mode, both CAMs and local switches
are always set to enable. In NBVA mode, the Global Controller stalls
other tiles within the same array when any tile starts the bit-vector-
processing phase. In tiles without active BV-STEs, the CAM and
local switch are disabled to save energy. The depth of BVs in each
array can be different, leading to different bit-vector-processing
phase latencies. To reduce the throughput penalty incurred by the
stalls, we designed two levels of buffering to hide the latency across
arrays partially. To reduce the throughput discrepancy between
NBVA mode and NFA/LNFA mode, multiple RAP banks can be
configured to share the workload of low throughput banks.
Input/Output Streaming. The I/O interfaces the RAP and the
host CPU. The hardware configuration is pre-loaded to RAP during
deployment. The system transmits streaming data through DMA
to the Bank Input Buffer of RAP for regexes matching without a
cache structure. When the CPU receives matching results from the
Bank Output Buffer, further analysis and actions will be taken.

The two-level input buffer structure is adopted from BVAP [52]
to accommodate scenarios where NBVAs in different arrays are
activated by different input characters, as shown in Fig. 8. The Bank
Input Buffer is a 128-entry ping-pong buffer to hide the latency
of loading data through DMA, and each array contains an 8-entry
FIFO as its input buffer. Array Input Buffer broadcasts one 8-bit
input symbol to all tiles when the bit-vector-processing phase does
not stall the array. If the bank contains tiles in NBVA mode, the
Bank Input Buffer employs a polling arbiter to process the data
requests issued by each array. Otherwise, the arbiter is disabled,
and the data from the Bank Input Buffer is broadcast to all arrays.

Each bank includes a 64-entry ping-pong Bank Output Buffer,
and each array contains a 2-entry FIFO as an Array Output Buffer.
Bank Output Buffer collects data from arrays through a bus because
the match rate is typically lower than 10%, and thus the bandwidth
is low. When the Bank Output Buffer is full, an interruption is sent
to the CPU, prompting it to retrieve reports and clear all entries.

4 Compilation and Mapping

We have implemented a regex-to-hardware compiler that allows for
high-level hardware programming. We compile each regex into one
of the three modes available in RAP (defined in §3): NBVA, LNFA,
and NFA. The choice is based on the characteristics of the regex in
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Figure 9: Decision graph for the compilation of RAP between
the NBVA, LNFA and NFA modes.

order to optimize the space and energy costs. Fig. 9 presents the
decision process to choose the RAP mode for each regex.

Compilation Procedure. Compiling a regex into a RAP mode
involves three steps: (1) regex rewriting to execute it in the chosen
mode, (2) mapping of the regex to hardware (STEs and bit vectors in
tiles), and (3) the regex-to-automaton construction. In this section,
we present the compilation of NBVA and LNFA, and omit the NFA
procedure that corresponds to the classical Glushkov construction.

4.1 Compilation for NBVA

The NBVA compiler considers several key parameters: the unfolding
threshold, which controls the bounded repetitions to be unfolded
into NFA states, and the depth and width of the CAM hardware.
Unfolding rewriting. The first step that we operate is the un-
folding rewriting. It consists of unfolding a bounded repetition
whenever its upper bound is below the unfolding threshold.

Example 4.1. Consider that the unfolding threshold is 4, the regex
ab(cd){2}e{1,33}f{2, }g{5} is rewritten into abcdcdee?e?fff*g{5}
after unfolding the first 4 bounded repetitions. Only g{5} is not
unfolded because the bound is greater than the threshold.

Bounded repetition rewriting. After the unfolding, we rewrite
bounded repetitions to map with the BV actions supported by RAP.
As the hardware does not support natively arbitrary read between
m and n, we rewrite regexes of the form r{m,n} into r{m}r{@,n-m}

where r{m} is simulated with r(m) and r{e,n-m} with rAll

Example 4.2. Consider the regex ab{10,48}cd{34}ef{128} and
a depth d = 16. First, the compiler replaces the bounded repetition
b{10,48} with b{103}b{@,38} to support the bounded repetition
using rAll. Then, it rewrites d{34} into d{32}dd to use r(32) for a
width of 2. We do not rewrite {128} as it can already be supported
by BV action r(128) for a width of 8.

Splitting. Once all BV transitions can be simulated with the hard-
ware BV actions, we need to map the regex states into hardware
STEs and tiles. The RAP compiler splits regexes that cannot be
mapped to a single tile into several tiles. There are two main con-
straints on NBVA tiles: (1) at most 128 CAM columns, and (2) no r
or rAll actions in the same tile.

Example 4.3. Consider the regex r = a{1024}bc{0,16} and depth
d = 4. For a{1024}, we would use one CAM column for the char-
acter class a and a width of w = 1024/4 = 256, which accounts
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for 256 columns for the bit vector. In total, we need 258 (one extra
column for set1 action) columns, which exceeds the limitation of
128 CAM columns per tile (as well as width < 128). We designed
an algorithm that splits regexes based on a set of constraints. For
the bounded repetition a{1024}, we proceed with a dichotomic
search to find the splitting point k such that cols( a{k}) < 128. We
find that for k = 504, we need only 1+ 1 + (504/4) = 128 CAM
columns for a{504}. Therefore, we split a{10243} into three tiles:
a{504}, a{504} and a{16} . Because the last tile contains only 3
CAM columns, we could add bc{0,163} in the same tile. However,
the RAP design disallows for r and rAll actions in the same tile.
Therefore, we put bc{@,16} in a fourth tile.

4.2 Compilation for LNFA

We use the Shift-And algorithm to execute regexes in the LNFA
mode of RAP. Shift-And can be viewed as the simulation of a ho-
mogeneous automaton, where the states can be placed in order
40,91, - --,qn-1 on a line and each transition is from a state g; to
a neighboring state gj41. In addition to computing masks to ex-
ecute the Shift-And algorithm, our compiler performs rewriting
to execute more regexes with LNFA instead of NFA, inspired by
[23]. As shown in Fig. 9, a regex will be compiled to LNFA if the
rewriting does not increase the number of states by more than 2Xx,
considering the smaller area of the LNFA mode over the NFA mode.

Example 4.4. Consider the regex r = a(b{1,2}|c)e. Asitis, r
cannot be compiled into LNFA mode because its equivalent automa-
ton has a transition between states a and e that are at positions 0 and
4 respectively (i.e., not a line). Our compiler unfolds the bounded
repetition and distributes the union over concatenation to rewrite
rinto a(b|bb|c)e and finally abe|abbe|ace where each member
of the union can be separately executed in LNFA mode. This trans-
formation comes at the cost of more STEs on the hardware.

4.3 Hardware Mapping

Through the mapping process, we determine the mode of each RAP
array and the associated regexes. Then, we configure RAP arrays
accordingly during deployment ahead of runtime. For NFA and
NBVA models, the mapper uses a greedy algorithm to map regexes
to RAP arrays while allocating resources for CCs and BVs. It groups
regexes together and ensures that each group can be mapped into
a single RAP array without hardware violation.

For LNFAs, we perform binning before mapping. We first sort
LNFAs based on their size. Next, we group the regexes into the
bin with the largest number of regexes along this sorting sequence.
When the size of the regex exceeds the upper limits supported by the
bin, we reduce the number of LNFA in the bin by half. This process
is repeated until each bin contains only one LNFA. Finally, we treat
each bin as one regex and apply the greedy mapping algorithm.
Overall, we can achieve an average utilization rate higher than 90%
across all benchmarks and RAP modes.

5 Experimental Evaluation

This section presents the evaluation setups and performance analy-
sis of RAP. We first conduct a design space exploration to determine
the depth of BVs in NBVA mode and the upper bound for the num-
ber of LNFAs within a bin for each benchmark. We then compare
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the performance between NFA and NBVA modes for NBVA-based
workloads in Table 2, as well as the performance between NFA
and LNFA modes for LNFA-based workloads in Table 3. Finally, we
evaluate the performance of RAP against SotA ASIC [18, 41, 52],
GPU [23], CPU [51], and FPGA [49] solutions.

5.1 Datasets

We evaluate the performance of RAP over 7 applications, which
contain over 20,000 regexes collected from real applications. These
benchmarks are: (1) the Snort [33, 40] and (2) Suricata bench-
marks [42] that contain patterns for network traffic, (3) the Prosite
benchmark that contains protein motifs from the PROSITE data-
base [34, 39], (4) the Yara [45] and (5) ClamAV [9] benchmarks
with patterns for virus detection, (6) the SpamAssassin bench-
mark [12] that includes patterns for detecting spam email, and
(7) the RegexLib dataset [31] which is a collection of regexes for
validating user input. The complete dataset is publicly available
here. Compared to the popular benchmarks ANMLZoo [46] and
AutomataZoo[47], our set of benchmarks contains a more up-to-
date list of regexes. Additionally, regexes with bounded repetitions
are unfolded in those benchmarks, making them unsuitable for
evaluating the performance of the NBVA module. Our set of bench-
marks is a superset of the benchmarks considered in BVAP [52].
For a fair comparison with hAP [50], a SotA FPGA design, we use
the same ANMLZoo [46] dataset to evaluate the performance of
RAP in order to directly compare with the results reported in [50].

5.2 Experimental Setup

Methodology. The regexes of the dataset are first compiled with
the custom compiler in Rust. Next, we combine the regexes into
groups by the mapper implemented in Python, whose regexes are
mapped to an array. Finally, we use a custom cycle-accurate simula-
tor designed for RAP simulation in Python, which can also simulate
existing in-memory automata accelerators like BVAP [52], CAMA
[18], and CA[41]. The simulator uses the actual dataflow to emulate
the cycle-accurate hardware behavior. Meanwhile, we performed
consistency checks on the datasets to verify the functionality of
RAP under all modes and the correctness of the hardware simulator
by comparing matching results of the simulator against a produc-
tion software matcher called Hyperscan [51]. For the CPU and
GPU experiments, we use a desktop machine running on Ubuntu
22.04 and equipped with an Intel Core 19-12900K CPU, an NVIDIA
GeForce RTX 4060 Ti, and 32 GB of memory. For the energy mea-
surement on the GPU, we adopt an approach derived from [21]. It
consists of measuring the average power consumption with the
NVIDIA Management Library (NVML) [28] at the constant rate
of 50Hz, which is the sampling frequency of the power hardware
counter. In this setting, one thread runs in the background and
reads the counter every 20ms. The average power is computed
from those measured points. For measuring the average power on
the CPU, we use the official Intel tool called Intel SoC Watch [19] to
measure the average power of the CPU socket. For the throughput
measurements, we exclude the IO time, i.e. the copy times between
the CPU and the GPU, and between the CPU and memory.

We focus on two system metrics: energy efficiency and compute
density. Energy efficiency is the processing throughput divided by
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Table 1: Circuit models in 28nm.

. Energy | Delay | Area | Leakage
e S o) | (s | Gmd) | (@A)
8T SRAM 128x128 1-14 298 5655 57
256256 2-55 410 18153 228
8T CAM 32x128 4 325 2626 14
Local Controller N/A 2 90 2900 18
Global Controller N/A 2 400 1400 9
Global wire 1 mm 0.07 66 50 N/A

the total power, while compute density is the throughput divided
by the hardware area, measuring the hardware’s area efficiency.
Circuit-Level Modeling. Table 1 lists circuit models used in our
evaluations, including access energy, delay, and area. Values of
SRAM and CAM arrays are derived from SPICE simulations on
custom-designed circuits in TSMC 28nm CMOS. The local and
global controllers are designed in Verilog and then synthesized
using Synopsys DC. The global wire estimation is based on the
data provided in CA [41]. For a fair comparison, all other automata
processor architectures reported in this paper adopt 128x128 FCB
as local switches and are simulated with the same circuit model
and simulator. We also use the same greedy algorithm for mapping.
The RAP tile shares a similar area as a CAMA tile, so RAP ’s global
wire delay is estimated to be 26.1ps, which is reported by CAMA
[18]. The largest delay of the RAP pipeline stage is 436.1 ps, which
sets its clock frequency to 2.08 GHz. Note that all chosen clock
frequencies include a 10% safety margin.

5.3 Design Space Exploration

The depth of BVs in the NBVA mode and the maximum number of
regexes inside the bins (bin size) are two user-controlled RAP pa-
rameters that optimize area, energy, and throughput performance
for different workloads. A larger depth of BVs offers a higher com-
pression rate, reducing area and energy, but suffers from throughput
punishment during the bit-vector processing phase. A larger bin
size concentrates initial states in fewer tiles and saves energy for
LNFA processing, but potentially increases the area due to redun-
dancy caused by the mapping procedure. This experiment includes
all regexes compiled to NBVA and LNFA modes in all seven bench-
marks. No regex has been compiled to NBVA in Prosite.

Because the depth of the BVs affects area, energy, and throughput,
we seek proper tradeoffs, as shown in Fig. 10(a). We choose the depth
that improves energy and area while offering acceptable throughput.
We find that datasets containing large bit vectors within a large
portion of NBVAs favor deeper BV depths, as larger bit vectors
benefit from the higher compression rates and reduce the area of
BVs. For example, regex AppPath=[C-Z1:\\\\[*\\1{1,64}\.exe in
Yara benefits from a large depth. The size of its bit vector is 64,
thus benefiting from a high compression rate. It also has a complex
prefix that leads to a low activation rate of the bit vector. In contrast,
datasets with smaller bit vectors prefer lower depths due to limited
area improvement and noticeable throughput penalty. For example,
regex Jeste.{1,8}firm.{1,8} in SpamAssassin requires a small
depth because of the limited size of bit vectors.

Fig. 10(b) depicts the area and energy consumption of LNFA
mode. A larger bin size reduces energy consumption when the
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redundancy area is negligible. So, we choose the bin size with the
highest energy efficiency without a significant area increment. The
results indicate that a dataset with small LNFAs benefits from a
larger bin size, as it groups small LNFAs into a single bin, concen-
trating their initial states within one tile rather than dispersing
them across the array to reduce state matching energy. Conversely,
a dataset with few small LNFAs favors a smaller bin size, as insuffi-
cient small LNFAs can’t fill a large bin, which prevents wasted area.
Fig. 10 presents the parameters we chose for the best performance.
Hence, the largest bin size we need to support is 32.

5.4 Performance Analysis of RAP

We assess the performance improvements of NBVA and LNFA
modes by matching 100,000 input characters against all regexes
compiled to NBVAs and LNFAs by our compiler. We unfold all
regexes to basic NFAs to obtain NFA mode results.

Table 2 compares the total energy, area, and throughput be-
tween the NBVA and NFA modes of RAP, as well as SotA ASIC
designs [18, 41, 52], for regexes that can be compiled to NBVA within
the benchmarks. Compared to the NFA mode of RAP, NBVA mode
consistently offers lower energy consumption because compressing
multiple standard STEs to one BV-STE reduces state-matching and
state-transition energy. It also provides smaller footprints, benefit-
ing from area saving in CCs storage and increased compression rate
for large bit vectors. NFA mode’s energy and area surpass NBVA
mode by 3.7x and 4.0X on average. Compared to BVAP, a SotA
dedicated to NBVA execution, RAP’s NBVA mode consumes merely
20% more energy, while keeping a smaller area averaged across
benchmarks. This is because dynamic allocation eliminates the
area wasted by unused bit vectors, and RAP can achieve a higher
compression rate than BVAP in some cases. NBVA mode of RAP
consistently achieves lower energy and area than CAMA and CA
because we use BVs to compress the bounded repetitions, except
for RegexLib. In RegexLib, the ratio and size of BVs are both low,
making the benefits of NBVA mode insufficient to compensate for
the overhead introduced by the local controller.

In processing LNFAs, RAP reduces the energy consumption by
79% on average compared to NFA mode, as shown in Table 3. The
reason is that most columns of CAM are power-gated by active
vector in LNFA mode, but all columns need to work under NFA
mode. The binning procedure maps initial states to fewer tiles, so
more tiles are power-gated when inactive, further enhancing the
energy efficiency. LNFA utilizes both CAM and local switches for
storage of CCs, which decreases the area by 2X in theory. However,
additional states introduced by LNFA conversion and redundancy
caused by binning reduce the area gain. Overall, the area achieved
in LNFA mode is 33% lower than in NFA mode. For the Yara dataset,
the area of LNFA mode is 13% larger than that of NFA mode, but it
is still acceptable due to its energy improvements. LNFA and NFA
modes of RAP achieve the same throughput as they both process
one input character per cycle and run at the same clock frequency.
Compared to CAMA, BVAP, and CA, RAP’s LNFA mode achieves
lower energy and area because state transition is performed by the
active vector, saving the energy of the routing switches.

The overall energy and area requirements of RAP are evaluated
with all regexes in all benchmarks. Fig. 11 shows the breakdown of
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Figure 10: Energy, area, and throughput of design space exploration of (a) NBVA (normalized to depth=4) and (b) LNFA
(normalized to bin size=1). The chosen parameters are in red text.

Table 2: Comparison of NBVA mode of RAP (baseline), NFA mode of RAP, CAMA [18], BVAP [52], and CA [41].

Dataset Energy (1] Area (mm?) Throughput (Gch/s)
NBVA | NFA | CAMA | BVAP | CA | NBVA | NFA | CAMA | BVAP | CA | NBVA | NFA | CAMA | BVAP | CA
RegexLib 71 71 54 40 40 136 | 137 | 115 123 | 187 | 170 | 208 | 214 1.96 | 1.82
SpamAssassin 43 72 53 36 45 086 | 169 | 142 092 | 233 | 191 | 208 | 2.14 172 | 182
Snort 188 | 937 692 132 | 607 | 3.67 | 1939 | 1634 | 551 | 2539 | 169 | 2.08 | 214 183 | 1.82
Suricata 191 | 847 629 136 | 540 | 3.80 | 17.08 | 1439 | 4.83 | 2271 | 187 | 2.08 | 214 174 | 182
Yara 62 328 235 67 224 | 136 | 769 | 651 226 | 916 | 207 | 208 | 214 185 | 1.82
ClamAV 1632 | 8294 | 5846 | 1887 | 5725 | 35 198 167 57 257 | 100 | 208 | 214 126 | 1.82
Average (normalized to NBVA) 1.0% 37X 2.7X 0.8%X 2.5%X 1.0X 4.0X 3.4% 1.4X% 5.2X 1.0x 13X 1.3% 1.0x 1.1x
Table 3: Comparison of LNFA mode of RAP (baseline), NFA mode of RAP, CAMA [18], BVAP [52], and CA [41].
Dataset Energy (uJ) Area (mm?) Throughput (Gch/s)
INFA | NFA | CAMA | BVAP | CA | LNFA | NFA | CAMA | BVAP | CA | LNFA | NFA | CAMA | BVAP | CA
RegexLib 45 121 92 92 66 | 159 | 229 | 192 312 | 3.8 | 208 | 208 | 214 200 | 1.82
Prosite 26 72 54 54 47 | 087 | 141 118 193 | 199 | 208 | 208 | 214 200 | 1.82
SpamAssassin 135 | 576 436 437 | 309 | 7.05 | 1071 | 9.00 | 1470 | 1516 | 2.08 | 208 | 2.14 200 | 1.82
Snort 48 214 163 163 | 123 | 247 | 401 | 338 541 | 542 | 208 | 208 | 214 200 | 1.82
Suricata 44 196 149 150 | 113 | 225 | 3.69 | 3.10 497 | 496 | 208 | 208 | 214 200 | 1.82
Yara 8 30 23 23 16 | 063 | 055 | 046 075 | 078 | 208 | 208 | 214 200 | 1.82
ClamAV 5 53 40 40 30 | 067 | 101 | 085 138 | 143 | 208 | 208 | 214 200 | 1.82
Average (normalized to LNFA) 1.0X 47X 3.6X 3.6X 2.7X% 1.0X 1.5% 1.2X 2.0% 2.0% 1.0X 1.0X 1.0X 1.0X 0.9%
4 of STES un d‘ﬁﬂiﬁ = E':S:g; ) LNFA] Area () and area results of different modes within the RAP architecture, we
RegexLib 109K 0.53 10.52 allocate additional resources to the RAP arrays in the NBVA mode
Prosite 24k 0.07 184 to increase throughput. If the throughput of a RAP array in the
SpamA. 197k 0.57 15.33 K .

Snort 360K 119 23.64 NBVA mode is lower than 2 Gch/s, we assign another RAP array
Suricata 318k 0.95 19.07 to work on the same regexes to share the workload and increase
Cla:::s 231;k ?;§ 421'?6 the throughput. This method introduces an area overhead of less

620 40 0 30100 6 Fo 2o oo S 10 O 20 40 €0 80 100 than 3%. Overall, we use the throughput of the NBVA mode after
Ratio (%) Ratio (%) Ratio (%) allocating additional resources as the system throughput.

Figure 11: The proportion of the number of STEs, energy,
and area in NFA, NBVA, and LNFA modes. The absolute total
values of each measurement are annotated in the figures.

the number of STEs, energy, and area into three types of automata
models. It can be observed that the proportion of energy and area
consumed by NFAs is higher than the percentage of STEs in NFA
modes, indicating the effectiveness of NBVA and LNFA modes.

5.5 Comparison with State-of-the-arts

We evaluated our proposed architecture using all benchmarks col-
lected from real-world applications with different workloads. We
compile all regexes using the optimal automata model and parame-
ters derived from design space exploration. To integrate the energy
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Comparison against ASICs. Fig. 12 summarizes the area, through-
put, energy efficiency, compute density, and power of RAP, BVAP
[52], CAMA [18], and CA [41]. RAP benefits significantly from
NBVAs and LNFAs while incurring little overhead in NFAs. As a
result, RAP enhances overall performance by combining the results
of all three modes, effectively handling datasets that are a mixture
of NFA, NBVA, and LNFA. Compared to BVAP, RAP improves the
compute density by 1.6x. With datasets dominated by NFA and
LNFA workloads, such as RegexLib and Prosite, BVAP incurs redun-
dant area overhead due to underutilized bit vectors. For ClamAV
and Yara, RAP decreases the area by 40%, because the depth of BVs
used in RAP is larger than that used in BVAP, leading to a lower
area of BVs. Although RAP takes 20% higher energy for NBVAs, the
energy improvements in LNFA mode compensate for this. Overall,
RAP achieves a comparable energy efficiency to BVAP.
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Figure 12: Performance comparison among RAP, BVAP,
CAMA, and CA. All values are normalized to that of RAP,
which are annotated in the figure.

Averaging across all benchmarks, RAP achieves notable improve-
ment in energy efficiency, compute density, and power over CAMA
by 1.5%, 1.3%, and 1.8%, and CA by 1.2, 2.5%, and 1.3X. Prosite
and SpamAssassin are LNFA dominant workloads, allowing RAP
to achieve 28% higher energy efficiency while maintaining simi-
lar compute density compared to CAMA. On Snort and Suricata
datasets, RAP ’s energy efficiency surpasses CAMA by 28%, and
their compute density exceeds CAMA by 22%, and CA by 59%.
These datasets have a similar workload distribution between NFA
and NBVA, so the overhead from NFA is minimal, but RAP greatly
benefits from NBVA. Yara and ClamAV workloads are dominated
by NBVA, where RAP significantly reduces energy and area by effi-
ciently compressing bit vectors in NBVAs. Therefore, RAP enhances
energy efficiency and compute density by 2.5X and 2.7X compared
to CAMA and by 2.3X and 4.5% compared to CA. Taking into ac-
count similar throughput, RAP also reduces power by 61% and 50%
compared to CAMA and CA. Because NFA mode in RAP incurs
area and energy overhead due to the local controller, which results
in a 20% performance degradation in the RegexLib dataset, as it
predominantly uses NFA.

Comparison against CPU and GPU. Meanwhile, various hard-
ware platforms are evaluated to perform general-purpose regex
matching. Fig. 13 compares the power and throughput of RAP, GPU
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Figure 13: Comparison of RAP, GPU [23], and CPU [51].

Table 4: Comparison between RAP and FPGA [49].

RAP hAP [49]
Dataset
(ANMLz00) Power | Throughput | Power | Throughput
(W) (Gcehys) (W) (Gch/s)
Brill 5.17 2.08 1.56 0.18
ClamAV 3.22 2.07 1.42 0.18
Dotstar 2.48 2.08 1.47 0.18
PowerEN 3.28 2.08 1.52 0.18
Snort 7.79 2.08 141 0.15

(HybridSA [23]), and CPU (Hyperscan [51]). Hyperscan [51] is a
state-of-the-art multi-pattern engine for modern CPUs. Its match-
ing algorithm uses SIMD instructions and a variant of Shift-And to
accelerate matching. HybridSA [23] is a hybrid CPU-GPU engine
that executes most regexes on the GPU with variants of Shift-And
while the rest are executed on the CPU. We experiment using the
GPU mode of HybridSA. The GPU engine consumes 16X power
compared to RAP, while RAP achieves 9.8% higher throughput on
average. RAP also uses 1.1% of power compared to CPU but achieves
60x higher throughput. Overall, RAP achieves >100x and >1000x
greater energy efficiency compared to GPU and CPU solutions.
Comparison against FPGA. We also compare our design to hAP
[49] on the ANMLzoo benchmark [46] as shown in Table 4. Among
all datasets, only ClamAV includes regexes with large bounded
repetitions. RAP achieves a throughput that is 11.5X-13.8x higher
than hAP, but the power only increases by 1.7x-5.5X. RAP shows a
higher energy efficiency compared to FPGA designs.

6 Conclusion

We present RAP, the first reconfigurable automata processor de-
signed for efficient regular pattern matching across diverse work-
loads. It supports the NBVA model by unified storage for both char-
acter classes and bit vectors, accompanied by an encoding scheme
for BV actions. The RAP hardware incorporates a specialized rout-
ing path to efficiently realize the linear transfer function of LNFA,
further optimized by a binning algorithm. Through cross-stack co-
design, RAP achieves higher efficiency and higher compute density
across real-world benchmarks, over state-of-the-art regex matching
solutions on various hardware platforms.
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A Artifact Appendix
A.1 Abstract

The artifact contains the source code used to simulate and evaluate
the RAP designs proposed in this paper and the state-of-the-art
automata processors compared with in Section 5. We have provided
a cycle-level simulator for RAP. The artifact provides information
on how to reproduce key results of the paper, namely the data
presented in Section 5, Fig. 10 (RAP design space exploration);
Section 5, Table 2 and Table 3 (performance comparison of the NBVA
mode and LNFA mode of RAP); and Section 5, Fig. 12 (performance
comparison between RAP and SotA automata processors).

A.2 Artifact check-list (meta-information)

Program: RAP simulator

o Data set: Prosite, RegexLib, SpamAssassin, Snort, Suricata, Yara,
ClamAV

e Hardware: Intel(R) Xeon(R) Gold 6136 CPU @ 3.00GHz

e Metrics: Area, Energy, Throughput, Compute density, Energy effi-

ciency, Power

Output: Metrics results in CSV and JSON format, and visualization

figures in PDF format

e How much disk space is required (approximately)?: 6GB

e How much time is needed to prepare workflow (approxi-
mately)?: < 1 hour

o How much time is needed to complete experiments (approxi-
mately)?: 72 hours (with 40 cores) on all datasets. 10 hours (with 5
cores) for the SpamAssassin dataset

e Publicly available?: Yes

e Code licenses (if publicly available)?: Apache License 2.0

e Archived (provide DOI)?: 10.5281/zenodo.15080391

A.3 Description

A.3.1 How to access. We have published the artifact on Zenodo.
The Zenodo DOI URL is: https://doi.org/10.5281/zenodo.15080391

A.3.2  Hardware dependencies. Any computing cluster should be
sufficient to run the relevant experiments. In our evaluations, we
used 40 cores (in total) to run the experiments within a reasonable
amount of time. We recommend using 4 GB of memory per core.

A.3.3  Software dependencies.

o A recent Linux or Windows distribution

e Python 3.10 or newer

e Conda

o Additional Python packages listed in the RAP. yaml file
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A.3.4 Datasets. All the pre-compiled datasets are available in the
repository (https://doi.org/10.5281/zenodo.15080391). Upon down-
loading and unzipping the repository, the datasets are located under
the ./mnrl/ folder.

A.4 Installation

A minimal installation can be achieved using the following com-
mands:

# create a new conda environment
conda env create -f RAP.yaml
conda activate RAP

Next, download the artifact at https://doi.org/10.5281/zenodo.
15080391 and extract it with the following command:

# unzip the artifact and go to the root folder
unzip RAP_simulator.zip
cd RAP_simulator

A.5 Experiment workflow

To run the experiments, choose a subset of the dataset and a task
to perform (Design Space Exploration, NFA, LNFA, or NBVA). Use
the following syntax to run experiments (here, LNFA for the Yara
and Prosite datasets):

python main_gap.py --data "Yara Prosite"
--task LNFA

The following syntax can be used to run an experiment over all the
datasets:

python main_gap.py --data "All" --task <experiment>

You can choose the number of processors used by changing
the num_worker variable in the ./utils/cfg.py config file. An
explanation of how to use the script is discussed in the next section.

A.6 Evaluation and expected results

We explain how to reproduce the key results of our paper.

A.6.1 Design Space Exploration. To reproduce the Design Space
Exploration (DSE) results of Fig. 10 (NBVA and LNFA modes), run
the following command:

python main_gap.py --data "All" --task DSE

The output JSON files are stored in
the ./result/nbva_sweep_depth/ (resp.
./result/final_gap_sccs_fcb_map/) folder for the NBVA
(resp. LNFA) mode. Each output file is prefixed by the dataset name.
Output tables are also generated and should match the results of
Fig. 10.

A.6.2 RAP NBVA against RAP NFA and ASICs. To reproduce the
comparison between RAP in NBVA (baseline) and NFA modes,
and the state-of-the-art ASIC designs in Table 2, run the following
command:

python main_gap.py --data "All" --task NBVA

The output CSV file is table_2.csv and is stored in the work-
ing directory (RAP_simulator). We expect the energy, area, and
throughput to match the result of Table 2.
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A.6.3 RAP LNFA against RAP NFA and ASICs. To reproduce the
comparison between RAP in LNFA (baseline) and NFA modes, and
state-of-the-art ASIC designs of Table 3, run the following com-
mand:
python main_gap.py --data "ALl" --task LNFA

The output CSV file is table_3.csv and is stored in the work-
ing directory (RAP_simulator). We expect the energy, area, and
throughput to match the result of Table 3.

A.6.4 RAP vs ASICs. To reproduce the comparison between RAP
and state-of-the-art ASIC designs of Fig. 12, which shows the overall
performance comparison between RAP and state-of-the-art ASIC
designs, run the following commands:

python main_gap.py --data "ALl" --task NFA

python main_gap.py --data "All" --task ASIC
You need to run the commands in A.6.2 and A.6.3 before run-
ning A.6.4. The output JSON files are stored in the ./result/
final_gap/ folder. Each output file is prefixed by the dataset
name. Output figures fig12_<metrics>.pdf are also generated
and should match the results of Fig. 12.

A.7 Experiment customization

The experiments can be extended with different input strings by
replacing the input files in the . /input/ folder.
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