
Static Analysis for Checking the Disambiguation Robustness

of Regular Expressions

KONSTANTINOS MAMOURAS, Rice University, USA

ALEXIS LE GLAUNEC, Rice University, USA

WU ANGELA LI, Rice University, USA

AGNISHOM CHATTOPADHYAY, Rice University, USA

Regular expressions are commonly used for �nding and extracting matches from sequence data. Due to
the inherent ambiguity of regular expressions, a disambiguation policy must be considered for the match
extraction problem, in order to uniquely determine the desired match out of the possibly many matches. The
most common disambiguation policies are the POSIX policy and the greedy (PCRE) policy. The POSIX policy
chooses the longest match out of the leftmost ones. The greedy policy chooses a leftmost match and further
disambiguates using a greedy interpretation of Kleene iteration to match as many times as possible. The
choice of disambiguation policy can a�ect the output of match extraction, which can be an issue for reusing
regular expressions across regex engines. In this paper, we introduce and study the notion of disambiguation
robustness for regular expressions. A regular expression is robust if its extraction semantics is indi�erent to
whether the POSIX or greedy disambiguation policy is chosen. This gives rise to a decision problem for regular
expressions, which we prove to be PSPACE-complete. We propose a static analysis algorithm for checking
the (non-)robustness of regular expressions and two performance optimizations. We have implemented the
proposed algorithms and we have shown experimentally that they are practical for analyzing large datasets of
regular expressions derived from various application domains.
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1 INTRODUCTION

Regular expressions are commonly used for searching in text [grep 2024] and for simple text
processing [awk 2024; sed 2024]. They have also found applications in numerous domains, including
network intrusion detection [Yu et al. 2006], bioinformatics [Roy and Aluru 2016] and runtime
veri�cation [Bartocci et al. 2018]. A key computational task is the membership problem: Given
a regular expression A and a string F as input, does the string belong to the language of the
expression? In practice, it is often useful to perform match extraction: �nd and output substrings of
the input string that match the desired pattern. For example, one may be interested in extracting all
email addresses that appear in a web page. POSIX utilities such as grep can be used to perform such
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computations. All mainstream programming languages come equipped with libraries for regular
expression matching. Due to the inherent ambiguity of regular expressions, the match extraction
problem requires a disambiguation policy, which describes how a match should be chosen when
there are many possible choices. The POSIX standard imposes the “leftmost longest” rule, i.e, it
chooses the match that starts as far left as possible that cannot be extended further to the right. The
PCRE policy also prefers a leftmost match. But it further disambiguates by favoring the most greedy
match. For a Kleene iteration A ∗, it prefers repeating A as many times as possible. Moreover, for a
nondeterministic choice A1 | A2, it prefers the left choice A1 over the right choice A2. Thus, given the
string aab and the regular expression (a|ab)* , the POSIX match is the entire string but the PCRE
match is the pre�x aa . The greedy disambiguation policy naturally arises from the implementation
of backtracking engines. To the best of our knowledge, all backtracking-based engines follow the
PCRE matching semantics. Cox [2010] discusses how the greedy semantics can be implemented
with a backtracking-free automata-based algorithm.

The reuse of regular expressions is common in practice. When programmers consider using a
regular expression for a certain task, it is typical for them to reuse a regex that is already written
by another programmer or contained in a curated list of regexes [Michael et al. 2019]. Hodován
et al. [2010] have found that in several popular web sites, only about 4% of the regular expressions
are unique. Wang et al. [2019] have observed that once written, 95% of regular expressions used in
GitHub projects are not edited in the future. Davis et al. [2019] have presented an empirical study
about the various syntactic di�erences in regular expressions across several di�erent libraries and
engines. The reuse of regular expression raises potential issues of portability across regex engines.
In this paper, we address the issue of reusing regular expressions across regex engines that

use di�erent disambiguation policies (POSIX versus greedy/PCRE). This problem is not just a
theoretical curiosity. We have investigated several datasets of regular expressions (Snort, Suricata,
SpamAssassin, and RegexLib) that cover various application domains and we have found that there
exist many regular expressions that do not have the same match extraction semantics when the
disambiguation policy is changed from POSIX to greedy (or vice versa). For example, the regex
((\d|[1-9]\d|1\d\d|2[0-4]\d|25[0-5])\.){3}(\d|[1-9]\d|1\d\d|2[0-4]\d|25[0-5]) (which is taken from
the Snort dataset) detects a range of IP addresses typically used by trojans for a data ex�ltration
attack from an infected target. For the input HOST: 239.255.255.250 which is taken from a real PCAP
�le, the greedy semantics would return the match 239.255.255.2 whereas the complete IP address is
239.255.255.250 . If one wants to extract the match to compare against a list of well-known suspicious
IP addresses, an alert can be erroneously ignored or triggered depending on the disambiguation
semantics. So, the di�erence in semantics can have security implications.

Main Contributions. We make the following contributions in this paper:

(1) We introduce the notion of (disambiguation) robustness for regular expressions. A regular
expression is robust if, for every input string, the preferred match according to the greedy
disambiguation policy (“leftmost greedy”) is the same as the preferred match according to
the POSIX disambiguation policy (“leftmost longest”). This gives rise to the computational
problem of deciding whether a regular expression is robust or not. We prove that this problem
is PSPACE-hard. If backreferences are allowed, then the problem becomes undecidable.

(2) Using a variant of classical Y-NFAs that indicate priorities on the transitions (when more than
one transition emanates from a state), we characterize non-robustness in terms of a reachability
property in a product graph of Y-NFA con�guration pairs. In these con�guration pairs, one
con�guration is for a “greedy” execution of the automaton and one con�guration for a parallel
“POSIX” execution. This establishes that the problem of checking robustness is contained in
PSPACE and is therefore PSPACE-complete. The characterization also gives rise to a static
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F, [8, 9 ] |= Y ⇐⇒ 8 = 9

F, [8, 9 ] |= f ⇐⇒ 9 = 8 + 1 and F (8) ∈ f

F, [8, 9 ] |= A1 | A2 ⇐⇒ F, [8, 9 ] |= A1 or F, [8, 9 ] |= A2

F, [8, 9 ] |= A1 · A2 ⇐⇒ there is : with 8 ≤ : ≤ 9 s.t.
F, [8, : ] |= A1 and F, [:, 9 ] |= A2

F, [8, 9 ] |= A ∗ ⇐⇒ 8 = 9 or there is : with 8 < : ≤ 9

s.t. F, [8, : ] |= A and F, [:, 9 ] |= A ∗

Fig. 1. Formal semantics of regular expressions. The satisfaction relation |= relates a stringF ∈ Σ, a location
[8, 9] with 0 ≤ 8 ≤ 9 ≤ |F |, and a regular expression A .

analysis algorithm for (non-)robustness that explores the graph of con�guration pairs and
returns a witness for non-robustness (when one exists).

(3) We identify two performance optimizations for dealing with the computationally di�cult
problem of robustness checking. The �rst optimization relies on the notion of end-unambiguity,
which says that a match cannot be further extended to the right. The second optimization relies
on several properties about the preservation of robustness when right-concatenating some
simple (but commonly occuring) regular expressions.

(4) We have implemented the proposed static analysis algorithm for (non-)robustness checking,
including the two aforementioned optimizations. To the best of our knowledge, this is the
�rst tool that performs this static analysis of regular expressions. Using our tool, we identify
hundreds of regular expressions in real regex datasets that are not robust (and are therefore
potentially problematic for reuse). We also show that non-robustness manifests when real-
world input strings are used. Finally, we establish experimentally that our tool can analyze
thousands of regular expressions in a reasonable amount of time and that the optimizations
o�er a substantial performance improvement. Our most optimized algorithm analyzes a regular
expression in less than 20msec on average (over the datasets that we have considered).

2 DISAMBIGUATION POLICIES

In this section, we provide formal de�nitions for the greedy and POSIX disambiguation policies for
match extraction. Instead of using parse trees, we de�ne by induction the greedy preference order
on the set of all matches of a regular expression. Using the greedy and POSIX preference orders,
we formally de�ne the concept of (disambiguation) robustness. Intuitively, a regular expression
is robust if, for every input string, the most preferred match speci�ed by the greedy policy is the
same as the one speci�ed by the POSIX policy. This notion gives rise to the computational problem
of checking whether a regular expression is (non-)robust, which we show to be PSPACE-hard.

Let Σ be a �nite alphabet of symbols (letters, characters). A predicate f ⊆ Σ is called a character
class. The set Reg(Σ) of regular expressions (regexes) is de�ned by the following grammar: A, A1, A2 ::=
Y | f | (A1 | A2) | A1 · A2 | A

∗. Concatenation is also written as A1A2 to reduce notational clutter. The
notation A+ (“repetition of A at least once”) is abbreviation for AA ∗. The notation A? is abbreviation
for A | Y. For a regular expression A , the notation A= is abbreviation for the concatenation A · A · · · A
(= times). The notation A {=} is also commonly used to describe the repetition of A exactly = times.
More generally, we write A {<,=} = A< (A?)=−< to denote the repetition of A from < to = times.
Every regular expression A denotes a language L(A ) ⊆ Σ

∗, de�ned in the standard way.
We write |F | to denote the length of a string F . The empty string (i.e., the string of length 0)

is denoted by Y. For a string F ∈ Σ
∗, we will call a pair [8, 9] with 0 ≤ 8 ≤ 9 ≤ |F | a location in

F . A position in |F | is an index in the range 0, 1, . . . , |F |. We write F [8 .. 9] for the substring of F
at location [8, 9]. E.g., for the string F = 01120101 (length |F | = 8), we have that F [0..3] = 011,
F [1..5] = 1120, andF [4..7] = 010, andF [5..8] = 101.

We can also think of a stringF ∈ Σ∗ as a function from dom(F) = {0, 1, . . . , = − 1} to Σ, where
= = |F | andF (8) is the letter at position 8 . This means thatF = F (0)F (1) . . .F (= − 1).
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De�nition 1 (Formal Match Semantics). LetF ∈ Σ∗ be a string, 8 and 9 be integers satisfying
0 ≤ 8 ≤ 9 ≤ |F |, and A ∈ Reg(Σ) be a regular expression. The relation |= is de�ned by induction as
shown in Fig. 1. The match-setM(F, A, 8) for a regex A and a wordF at position 8 ∈ {0, . . . , |F |} is
the set of locations with left endpoint 8 where A has a match in F , i.e.,M(F, A, 8) = {[8, 9] | 0 ≤
8 ≤ 9 ≤ |F | andF, [8, 9] |= A }. The match-setM(F, A ) for a regex A and a word F is the set of all
locations where A has a match in F , i.e.,M(F, A ) = {[8, 9] | 0 ≤ 8 ≤ 9 ≤ |F | andF, [8, 9] |= A }.
Alternatively, this can be de�ned asM(F, A ) =

⋃

{M(F, A, 8) | 0 ≤ 8 ≤ |F |}.

A decomposition of a location [8, 9] (where 8 ≤ 9 ) is a nonempty �nite sequence of locations
[81, 91], [82, 92], . . . , [8=, 9=] with 81 = 8 , 9= = 9 , and 9: = 8:+1 for every : = 1, 2, . . . , = − 1. We note
thatF, [8, 9] |= A ∗ i� 8 = 9 or there exists a decomposition [81, 91], [82, 92], . . . , [8=, 9=] of [8, 9] such
thatF, [8: , 9: ] |= A for every : = 1, . . . , =.
Let A be a regular expression,F ∈ Σ∗, and [8, 9] be a location inF . It holds thatF [8 .. 9] ∈ L(A )

i�F, [8, 9] |= A . This means that |= gives us an alternative way to look at the semantics of regular
expressions that is more �exible than the usual de�nition using languages.

2.1 Disambiguation

We will de�ne the greedy preference order <A
8 on the match-setM(F, A, 8). The preference order <A

8

is a linear order. The de�nition is by induction on the structure of A . For the base case A = Y, we
have thatM(F, Y, 8) = {[8, 8]}, and <

A
8 is de�ned to be empty. For the case A = f ⊆ Σ,M(F, f, 8) =

{[8, 8 + 1] | F (8) ∈ f}.M(F, f, 8) is either empty or singleton, and we de�ne <A
8 to be empty.

Consider now the case A = A1 | A2 of nondeterministic choice. De�ne )8 = {inl[8, 9] | F, [8, 9] |=
A1}∪{inr[8, 9] | F, [8, 9] |= A2}. The “�attening” function d8 : )8 →M(F, A ) is given by d8 (inl[8, 9]) =
d8 (inr[8, 9]) = [8, 9]. The order <8 on )8 is generated by the rules:

[8, 9] <A1
8 [8, 9

′]

inl[8, 9] <8 inl[8, 9
′]

[8, 9] <A2
8 [8, 9

′]

inr[8, 9] <8 inr[8, 9
′]

inl[8, 9] <8 inr[8, 9
′]

Finally, we de�ne [8, 9] <A
8 [8, 9

′] i� min d−18 ( [8, 9]) <8 min d−18 ( [8, 9
′]), where the<8= operator is

with respect to the linear order <8 .
For the case A = A1A2 of concatenation, de�ne )8 = {[8, 9] [ 9, :] | F, [8, 9] |= A1 andF, [ 9, :] |= A2}.

The “�attening” function d8 : )8 →M(F, A ) is given by d8 ( [8, 9] [ 9, :]) = [8, :]. The order <8 on )8
is generated by the following rules:

[8, 9] <A1
8 [8, 9

′]

[8, 9] [ 9, :] <8 [8, 9
′] [ 9 ′, : ′]

[ 9, :] <A2
9 [ 9, :

′]

[8, 9] [ 9, :] <8 [8, 9] [ 9, :
′]

Finally, we de�ne [8, 9] <A
8 [8, 9

′] i� min d−18 ( [8, 9]) <8 min d−18 ( [8, 9
′]), where the<8= operator is

with respect to the linear order <8 .
Now, we deal with the case A = A ∗1 of Kleene iteration. We consider the sequences of locations

S8 = {⟨⟩} ∪ {⟨[81, 82], [82, 83], . . . , [8=, 8=+1]⟩ | = ≥ 1, 8 = 81, and 8:+1 − 8: ≥ 1 for all : = 1, . . . , =}.

De�ne )8 = {( ∈ S8 | F, [8: , 8:+1] |= A1 for every location [8: , 8:+1] in (} and the “�attening”
function d8 : )8 →M(F, A ) by d8 (⟨[81, 82], . . . , [8=, 8=+1]⟩) = [81, 8=+1] and d8 (⟨⟩) = [8, 8]. The order
<8 on )8 is generated by the following rules:

[8, 9] <A1
8 [8, 9

′]

[8, 9] · ( <8 [8, 9
′] · ( ′

( < 9 (
′

[8, 9] · ( <8 [8, 9] · (
′

( <8 ⟨⟩ when ( ≠ ⟨⟩

We de�ne [8, 9] <A
8 [8, 9

′] i� min d−18 ( [8, 9]) < min d−18 ( [8, 9
′]), where the <8= operator is with

respect to the linear order <8 .
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Finally, we de�ne the greedy preference order <A on the match-setM(F, A ) as follows: [8, 9] <A

[8 ′, 9 ′] i� 8 < 8 ′ or (8 = 8 ′ and [8, 9] <A
8 [8, 9

′]).

Example 2 (Greedy Preference Order). Let us consider the example A = b+ andF = abbbabb . The
match-set for A inF isM(F, A ) = {[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4], [5, 6], [5, 7], [6, 7]} and the
greedy preference order is [1, 4] < [1, 3] < [1, 2] < [2, 4] < [2, 3] < [3, 4] < [5, 7] < [5, 6] < [6, 7].
The most preferred match of A inF is at location [1, 4] (leftmost greedy match).

The POSIX preference order ≺ on match locations is de�ned by [8, 9] ≺ [8 ′, 9 ′] i� 8 < 8 ′ or (8 = 8 ′

and 9 > 9 ′). The intuition is that the POSIX disambiguation policy prefers the longest out of the
leftmost matches (also referred to as “leftmost longest”).

Example 3 (Greedy vs POSIX Preference). For A = a.*b|a.*c andF = baacaabc , the match-set is
M(F, A ) = {[1, 4], [1, 7], [1, 8], [2, 4], [2, 7], [2, 8], [4, 7], [4, 8], [5, 7], [5, 8]}. The greedy preference
order is [1, 7] < [1, 8] < [1, 4] < [2, 7] < [2, 8] < [2, 4] < [4, 7] < [4, 8] < [5, 7] < [5, 8]. The
POSIX preference order is [1, 8] ≺ [1, 7] ≺ [1, 4] ≺ [2, 8] ≺ [2, 7] ≺ [2, 4] ≺ [4, 8] ≺ [4, 7] ≺
[5, 8] ≺ [5, 7]. The most preferred greedy (resp., POSIX) match is at location [1, 7] (resp., [1, 8]).

2.2 Robustness and Computational Hardness

The most common computational problem associated with regular expressions is the matching
problem. In the case of Boolean matching (does there exist a match?), there is no need for a
disambiguation policy. For match extraction, a disambiguation policy has to be speci�ed.
− Greedy Matching: Given a regular expression A ∈ Reg(Σ) and a stringF ∈ Σ∗, output the most

preferred greedy match (i.e., leftmost greedy) of A inF (if one exists).
− POSIX Matching: Given a regular expression A ∈ Reg(Σ) and a stringF ∈ Σ∗, output the most

preferred POSIX match (i.e., leftmost longest) of A inF (if one exists).

De�nition 4 (Denotations and Robustness). Let A ∈ Reg(Σ). The greedy denotation of A is a
function ⟦A⟧G : Σ∗ → Option(N × N) de�ned as follows: ⟦A⟧G (F) = None ifM(F, A ) = ∅, and
⟦A⟧G (F) = Some(minM(F, A )) ifM(F, A ) ≠ ∅, where the minimum is taken with respect to the
greedy preference order. The POSIX denotation ⟦A⟧P : Σ∗ → Option(N×N) of A is de�ned similarly,
with the di�erence being that the minimum is taken with respect to the POSIX preference order.

We say that a regular expression A is (disambiguation) robust (i.e., robust with respect to the
choice of disambiguation policy) if the most preferred match in any string is the same regardless of
whether the greedy or POSIX policy is used for disambiguation. In other words, A is de�ned to be
robust i� its greedy and POSIX denotations are equal, i.e., ⟦A⟧G = ⟦A⟧P.

Robustness is a property over regular expressions, so it gives rise to a corresponding decision
computational problem (robustness analysis). De�ne the IsRobust problem as follows: Given a
regular expression A ∈ Reg(Σ), is A robust (in the sense of De�nition 4)?

Theorem 5 (Hardness of Checking Robustness). The problem IsRobust is PSPACE-hard.

Proof. Recall that a regex A is called universal if L(A ) = Σ
∗. We will reduce the universality

problem for regular expressions, which is known to be PSPACE-complete, to the problem IsRobust.
Let Σ be the alphabet for the input expression. Suppose that ▷ (“left marker”) and ◁ (“right marker”)
are symbols that are not in Σ. De�ne the alphabet Γ = Σ∪{▷,◁}. The function 5 : Reg(Σ) → Reg(Γ)
is de�ned by 5 (A ) = ▷(A◁)? | ▷Σ∗◁. Notice that L(5 (A )) = {▷} ∪ {▷F◁ | F ∈ Σ∗}. We claim that,
for every A ∈ Reg(Σ), A is universal i� 5 (A ) is robust.

Suppose that A is universal. LetF be an arbitrary string over Σ ∪ {▷,◁}. We will show that the
greedy and POSIX preferred matches for 5 (A ) inF are the same. IfF does not contain ▷, then there
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is no match and we have agreement. We can assume from now on thatF contains ▷. Suppose that
the �rst occurrence of ▷ is at location [8, 8 + 1]. There can be no match starting earlier than 8 , so the
preferred match for both the greedy and POSIX policy must start at position 8 (both policies want
the leftmost match). If the su�xF [8 + 1..] contains no occurrence of ◁, then the only match is ▷ at
location [8, 8 + 1], so there is agreement. Now, we consider the case whereF [8 + 1..] contains at least
one occurrence of ◁ and the earliest occurrence is at location [ 9, 9 + 1] with 9 ≥ 8 + 1. There can be
no match [8, 9 ′] with 9 ′ > 9 + 1, so the only matches are at locations [8, 8 + 1] and [8, 9 + 1]. The
POSIX policy prefers the match at [8, 9 + 1] because it is longer. The greedy policy will choose to
match using ▷(A◁)? instead of ▷Σ∗◁, but it will also prefer the match at location [8, 9 + 1] because
A◁ matches at [8 + 1, 9 + 1] (since A is universal). So, there is agreement in all cases.

Now, we assume that A is not universal, which means that there is a string E ∈ Σ
∗ such that

E ∉ L(A ). Consider the stringF = ▷E◁. According to the POSIX policy, the most preferred match
is at location [0, |F |] (entire string), because it is the longest one. The greedy policy, on the other
hand, prefers the match at location [0, 1], because it favors the choice ▷(A◁)? over ▷Σ∗◁. Note that
A◁ does not match at location [1, |F |], becauseF [1..|F | − 1] = E .

We have established that A is universal i� 5 (A ) is robust. The function 5 can be computed in
polynomial time. So, IsRobust is PSPACE-hard. □

The proof of Theorem 5 gives a reduction from universality to IsRobust that works for any
class of regexes that allows the construction 5 (A ). So, for regular expressions with backreferences,
IsRobust is at least as hard as universality, which is undecidable [Freydenberger 2013]. It would
be interesting to study the complexity of IsRobust when lookaround assertions [Mamouras and
Chattopadhyay 2024] and bounded repetition [Kong et al. 2022; Le Glaunec et al. 2023; Wen et al.
2024] are allowed. These constructs make regular expressions more succinct.

3 GREEDY NONDETERMINISTIC FINITE AUTOMATA

In this section, we consider variants of classical NFAs that are appropriate for greedy matching,
which we call greedy NFAs or GNFAs. A GNFA can have Y-transitions. The GNFA model is a
convenient translation target for regular expressions. The main feature of this model of automata
is that it assigns priorities to transitions when there is a choice to be made.
Informally, a “greedy NFA” (GNFA) is an Y-NFA A that satis�es the following properties: (1) It

has states & = {0, 1, . . . ,< − 1}, where< is the size of A (i.e., number of states). (2) It has a unique
initial state, which is always state 0. (3) It has a unique �nal state, which is always state< − 1.
(4) The �nal state has no successors, i.e., no transitions emanating from it. (5) Every non-�nal state
is of one of three types: a “guarded” state, or a “jump” state, or a “(nondeterministic) choice” state.
A guarded state @ has the unique successor @′ = @ + 1 and the transition @ → @′ is labeled with
some character class f ⊆ Σ. A jump state @ has a unique successor @′ and the transition @ → @′ is
labeled with Y. A choice state @ has exactly two successors @′ < @′′. The transition @ → @′ is labeled
with Y / 0 and the transition @ → @′′ is labeled with Y / 1. Since a choice state has two outgoing
transitions, the intuition is that the one labeled with Y / 0 is preferred over the one labeled with
Y / 1. We write D = {0, 1} for the set of labels that determine the choice (“D” stands for direction).

De�nition 6. A greedy NFA (with Y-transitions) or GNFA of size< over the alphabet Σ is a tuple
A = (&,Δ), where & = {0, 1, . . . ,< − 1} is the set of states, 0 is the initial state,< − 1 is the �nal
state, and Δ : {0, 1, . . . ,< − 2} → P(Σ) ⊕ & ⊕ (& ×&) is the transition function (where ⊕ is the
operation of disjoint union, i.e., coproduct). We also write |A| for the size of A.
If Δ(@) = f for some character class f , then @ is called a guarded state (and its successor is

@′ = @ + 1). If Δ(@) = @′ for some state @′ ∈ & , then @ is called a jump state. If Δ(@) = (@′, @′′) for
states @′, @′′ ∈ & , then @ is called a (nondeterministic) choice state and it must hold that @′ < @′′.
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Suppose that @ is a state of a GNFA. We write @ →f @ + 1 to indicate that Δ(@) = f , where
@ + 1 is the unique successor of the guarded state @. Moreover, for a symbol 0 ∈ Σ, @ →0 @ + 1
indicates that 0 ∈ Δ(@). Similarly, we write @ →Y @′ to indicate that Δ(@) = @′. Finally, we
write @ →Y/0 @′ and @ →Y/1 @′′ to indicate that Δ(@) = (@′, @′′). A path in A is a sequence
@0 →

G0 @1 →
G1 @2 →

G2 · · · →G=−1 @= where (1) each G8 is either a symbol 0 ∈ Σ or one of
Y, Y / 0, Y / 1, and (2) @8 →G8 @8+1 for every 8 = 0, . . . , = − 1. If the path c1 ends at state @ and the
path c2 starts from @, then c1 ⋄ c2 is the path that results from concatenating c1 and c2 (fusing the
states @ at the boundary). The (symbol) label of a path c , denoted label(c), is the sequence of all
alphabet symbols seen in it from left to right. The disambiguation trace trc(c) of a path c is the
sequence of choice labels 0, 1 seen in it from left to right. An accepting path in A is a path whose
�rst state is the initial state and whose last state is the �nal state. We say that A accepts a string
F ∈ Σ∗ if there is an accepting path in A whose label is equal toF .

The Thompson construction is a well-known way to construct Y-NFAs that implement regular
expressions. Despite the similarity, we provide the formal de�nition for GNFAs below, since the
particular de�nitions that we use here are important for the algorithms that will be presented later.

De�nition 7 (Thompson Construction). For the regex Y, we de�ne AY to be the GNFA with
& = {0}, where the unique state is both initial and �nal. For a character class f , we de�ne Af to
have states & = {0, 1} and Δ(0) = f . Let A1 = (&1,Δ1) and A2 = (&2,Δ2) be GNFAs with sizes
<1 = |&1 | and<2 = |&2 | respectively. We de�ne the concatenation A1 · A2 to be the GNFA (&,Δ)
of size< = |& | = (<1 − 1) +<2 where Δ(@) = Δ1 (@) if 0 ≤ @ < <1 − 1 and

Δ(@) = (<1 − 1) + Δ2 (@ − (<1 − 1)), if<1 − 1 ≤ @ < <1 +<2 − 2.

Informally, the concatenation collapses the �nal state of A1 with the initial state of A2. The
(nondeterministic) choice A1 |A2 is the GNFA (&,Δ) of size< = |& | = 1 +<1 +<2, given by

Δ(0) = (1, 1 +<1) Δ(@) = 1 + Δ1 (@ − 1), if 1 ≤ @ < <1

Δ(<1) =<1 +<2 Δ(@) = (<1 + 1) + Δ2 (@ − (<1 + 1)), if<1 + 1 ≤ @ < <1 +<2

The (Kleene) iteration A∗1 is the GNFA (&,Δ) of size< = |& | = 1 +<1 + 1, de�ned as follows:

Δ(0) = (1, 1 +<1) Δ(@) = 1 + Δ1 (@ − 1), if 1 ≤ @ < <1 Δ(<1) = 0

For a regular expression A , the Thompson automaton AA results from A by applying each of the
above constructors for the corresponding regular operator.

Example 8 (Thompson Construction). The Thompson GNFA for f has states & = {0, 1} with
Δ(0) = f . The Thompson GNFA for f1f2 has states & = {0, 1, 2} with Δ(0) = f1 and Δ(1) = f2.

0 1
f1

0 1 2
f1 f2

Notice that guarded states are colored with blue. A �nal state is colored with orange. The Thompson
GNFA for f1 |f2 has states& = {0, 1, 2, 3, 4} with Δ(0) = (1, 3), Δ(1) = f1, Δ(2) = 4, and Δ(3) = f2.

0 1 2 3 4
Y / 0

Y / 1

f1
Y

f2

Choice states are colored with green and jump states are colored with gray. The transition labeled
with Y / 0 is of higher priority than the transition labeled with Y / 1. This encodes the fact that the
greedy policy prefers matching f1 over matching f2. The Thompson GNFA for f? = f | Y has states
& = {0, 1, 2, 3} with Δ(0) = (1, 3), Δ(1) = f , and Δ(2) = 3 (see diagram below on the left). Since
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states 2 and 3 are connected with an Y-transition, they can be collapsed. This streamlines the GNFA
construction for the regex f? (shown below on the right).

0 1 2 3
Y / 0

Y / 1

f1 Y
0 1 2

Y / 0

Y / 1

f1

The Thompson GNFA for f∗ has states & = {0, 1, 2, 3} with Δ(0) = (1, 3), Δ(1) = f , and Δ(2) = 0

(see diagram below on the left). For the regex f+, we can construct a GNFA that has fewer states
than what we would get with the encoding A+ = AA ∗ (see diagram below on the right).

0 1 2 3
Y / 0

Y / 1

f
Y

0 1 2
f Y / 1

Y / 0

The transition labeled with Y / 0 indicates that it is preferred to repeat the loop rather than end it.
This is consistent with the greedy (also called “eager”) interpretation of Kleene iteration.

We use the lexicographic order < on elements ofD∗. The order < is linear (i.e., total). For g, g ′ ∈ D∗,
we de�ne g ≪ g ′ i� there exists 8 ∈ dom(g) ∩ dom(g ′) such that g [0..8] = g ′[0..8] and g (8) < g ′(8)
(i.e., g (8) = 0 and g ′(8) = 1). Notice that g ≪ g ′ implies g < g ′. For all g, g ′, d, d ′ ∈ D∗, g ≪ g ′

implies gd ≪ g ′d ′. Moreover, g < g ′ i� g ≪ g ′ or (g is a strict pre�x of g ′). If g is a strict pre�x of
g ′, then g and g ′ are not comparable with respect to the≪ order.

De�nition 9 (Epsilon Paths). Let A be a GNFA and @, @′ ∈ & . We de�ne PY (@, @′) to contain the
acyclic Y-paths c from @ to @′ (i.e., label(c) = Y). We also de�ne RY (@) = {@′ | PY (@, @′) ≠ ∅}. That is,
RY (@) is the set of states that are Y-reachable from @. Finally, TY (@, @′) = min{trc(c) | c ∈ PY (@, @

′)}
is the least (“best”) trace of the acyclic Y-paths from @ to @′ (min is taken w.r.t. <).

A (greedy) priority is a pair (8, g) ∈ N × D∗. We de�ne the order < on priorities as follows:
(8, g) < (8 ′, g ′) i� 8 < 8 ′ or (8 = 8 ′ and g < g ′). Similarly, (8, g) ≪ (8 ′, g ′) i� 8 < 8 ′ or (8 = 8 ′ and
g ≪ g ′). For a priority (8, g) ∈ N × D∗ and g ′ ∈ D∗, we de�ne the concatenation (8, g) · g ′ = (8, gg ′).

In De�nition 10, we will also consider triples (8, 9, g) ∈ N × N × D∗. Informally, we order these
triples and we also compare them with priorities by dropping the 9 component: (8, g), (8, 9, g) <
(8 ′, g ′), (8 ′, 9 ′, g ′) i� (8, g) < (8 ′, g ′) and (8, g), (8, 9, g) ≪ (8 ′, g ′), (8 ′, 9 ′, g ′) i� (8, g) ≪ (8 ′, g ′). We also
de�ne the relation ≃ as follows: (8, g), (8, 9, g) ≃ (8 ′, g ′), (8 ′, 9 ′, g ′) i� (8, g) = (8 ′, g ′).

De�nition 10 (Greedy Con�guration). Let A be a GNFA with initial state @in = 0 and �nal
state @�n = |A| − 1. A path is said to be Y-acyclic if it does not contain any Y-cycle. For F ∈ Σ

∗

and 0 ≤ 8 ≤ 9 ≤ |F |, we de�ne the set Paths(F, 8, 9, @) of all Y-acyclic paths c in A from @in to

@ with label(c) = F [8 .. 9]. Moreover, Paths(F,@) =
⋃ |F |

8=0Paths(F, 8, |F |, @) and Reach(F) = {@ |
Paths(F,@) ≠ ∅}. If @ ∈ Reach(F), we de�ne the greedy priority

GPr(F,@) = min{(8, trc(c)) | 0 ≤ 8 ≤ |F | and c ∈ Paths(F, 8, |F |, @)}.

The set of accepting paths forF (together with their start and end positions) is

Acc(F) = {(8, 9, c) | 0 ≤ 8 ≤ 9 ≤ |F | and c ∈ Paths(F, 8, 9, @�n)}.

We de�neMatched(F) = 1 if Acc(F) ≠ ∅ andMatched(F) = 0 if Acc(F) = ∅. The best greedy
match for F is GBest(F) = min{(8, 9, trc(c)) | (8, 9, c) ∈ Acc(F)}. The < order is not total on
triples, but the min here is well-de�ned because the trace trc(c) uniquely determines 9 in a GNFA.
The greedy con�guration for F is a partial map " = GCfg(F) whose domain contains the

guarded states @ of Reach(F) that satisfy GPr(F,@) < GBest(F). The con�guration maps a state
@ to its priority, that is," (@) = GPr(F,@) for every @ ∈ dom(").
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Wewrite S for the set of all state identi�ers (i.e., S = N, but S helps distinguish the use of numbers
as states).We can representGCfg(F) as a vector [(@0, 80, g0), . . . , (@:−1, 8:−1, g:−1)] : Vect(S×N×D∗)
with" (@ℓ ) = (8ℓ , gℓ ), where the states are not duplicated and they are ordered by greedy priority:
(80, g0) < (81, g1) < · · · < (8:−1, g:−1). A triple (@, 8, g) : S × N × D∗ is called a greedy token.
Let us discuss now some easy consequences of Def. 10. First, we observe that Paths(F, 8, 8, @�n) =

PY (@in, @�n) for every 8 with 0 ≤ 8 ≤ |F |. We have that GBest(F) ≃ GPr(F [0.. 9], @�n) for some
9 = 0, . . . , |F |. From Acc(F) ⊆ Acc(F0) we obtain that GBest(F0) ≤ GBest(F). Finally, we
observe that Matched(F) = 1 i� GBest(F) is de�ned.

Lemma 11 (Greedy Trichotomy). Let A be a GNFA andF ∈ Σ∗. For every @ that is guarded or
�nal, GPr(F,@) ≪ GBest(F) or GPr(F,@) ≃ GBest(F) or GBest(F) ≪ GPr(F,@).

Lemma 12 (Greedy Init & Step). Let A be a GNFA,F ∈ Σ∗, and 0 ∈ Σ. The following hold:

(1) If @ ∈ Reach(Y) = RY (@in), then GPr(Y, @) = (0, g) with g = TY (@in, @).
(2) For every @′ ∈ Reach(F), we have that GPr(F0,@′) = ( |F0 |, TY (@in, @

′)) or GPr(F0,@′) =
GPr(F,@) · TY (@ + 1, @

′) for some guarded state @ with @ →0 @ + 1.
(3) If GBest(F0) ≠ GBest(F), then there is a guarded state @ with @ →0 @ + 1 such that

GBest(F0) = (8, |F0 |, g1g2), where (8, g1) = GPr(F,@) and g2 = TY (@ + 1, @�n).

Example 13. The (streamlined) Thompson GNFA for the regex (0∗1)∗2? is shown below:

0 1 2 3 4 5 6 7 8
Y / 0

Y / 1

Y / 0

Y / 1

0
Y

1
Y

Y / 0
Y / 1

2

The Y-reachable states from the initial state @in = 0 are RY (@in) = {0, 1, 2, 4, 6, 7, 8}. Notice that:

TY (0, 0) = Y TY (0, 1) = 0 TY (0, 2) = 00 TY (0, 4) = 01 TY (0, 6) = 1 TY (0, 7) = 10

and TY (0, 8) = 11. So, GCfg(Y) = [(2, 0, 00), (4, 0, 01), (7, 0, 10)] and GBest(Y) = (0, 0, 11). We
will consider now the successors of the guarded states 2, 4, 7 and their Y-closure.

2 →0 3 RY (3) = {3, 1, 2, 4} TY (3, 3) = Y TY (3, 1) = Y TY (3, 2) = 0 TY (3, 4) = 1

4 →1 5 RY (5) = {5, 0, 1, 2, 4, 6, 7, 8} TY (5, 5) = Y TY (5, @) = TY (0, @) for @ ≠ 5

We also have that 7 →2 8 and RY (8) = {8}. From GCfg(Y) and GBest(Y) we calculate GCfg(0) =
[(2, 0, 000), (4, 0, 001)] and GBest(0) = (0, 0, 11). Informally, we can think that GCfg(0) is ob-
tained from the token (2, 0, 00) of GCfg(Y) after taking the transition 2 →0 3 and then following
Y-paths. Notice that (0, 000) = (0, 00) · TY (3, 2) and (0, 001) = (0, 00) · TY (3, 4).

Lemma 14. Let A be the Thompson GNFA for the regex A andF ∈ Σ∗. If ⟦A⟧G (F) = None, then
GBest(F) is unde�ned. If ⟦A⟧G (F) = Some( [8, 9]), then GBest(F) = (8, 9, g) for some g ∈ D∗.

A (POSIX) priority is a a natural number (which represents the start position of a path in a string).
We use the order ≺ for POSIX priorities (elements of N) and matches (elements of N×N). We de�ne
8 ≺ 8 ′ i� 8 < 8 ′, 8 ≺ [8 ′, 9 ′] i� 8 ≺ 8 ′, and [8, 9] ≺ [8 ′, 9 ′] i� 8 ≺ 8 ′ or (8 = 8 ′ and 9 > 9 ′).

De�nition 15 (POSIX Con�guration). LetA be a GNFA. If @ ∈ Reach(F), we de�ne the POSIX
priority PPr(F,@) = min{8 | 0 ≤ 8 ≤ |F | and Paths(F, 8, |F |, @) ≠ ∅}. The best POSIX match

for F is PBest(F) = min{[8, 9] | (8, 9, c) ∈ Acc(F)}. The POSIX con�guration for F is a partial
map " = PCfg(F) whose domain contains those guarded states @ of Reach(F) that satisfy
PPr(F,@) ⪯ PBest(F). Moreoever," (@) = PPr(F,@) for every @ ∈ dom(").
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We can represent PCfg(F) as a vector [(@0, 80), . . . , (@:−1, 8:−1)] : Vect(S × N) with" (@ℓ ) = 8ℓ ,
where the states are not duplicated and they are ordered by POSIX priority: 80 ≤ 81 . . . ≤ 8:−1. A
pair (@, 8) : S × N is called a POSIX token.

Lemma 16 (POSIX Init & Step). Let A be a GNFA,F ∈ Σ∗, and 0 ∈ Σ. The following hold:

(1) If @ ∈ Reach(Y) = RY (@in), then PPr(Y, @) = 0.
(2) For every @′ ∈ Reach(F), we have that PPr(F0,@′) = |F0 | or PPr(F0,@′) = PPr(F,@) for

some guarded state @ with @ →0 @ + 1 and @′ ∈ RY (@ + 1).
(3) If PBest(F0) ≠ PBest(F), then there is a guarded state @ with @ →0 @ + 1 such that

PBest(F0) = [8, |F0 |], where 8 = PPr(F,@) and @�n ∈ RY (@ + 1).

Lemma 17. Let A be the Thompson GNFA for the regular expression A andF ∈ Σ∗. If ⟦A⟧P (F) =
None, then PBest(F) is unde�ned. If ⟦A⟧P (F) = Some( [8, 9]), then PBest(F) = [8, 9].

Lemma 14 (resp., Lemma 17) says that the Thompson GNFA for A can be used to implement the
greedy denotation ⟦A⟧G (resp., the POSIX denotation ⟦A⟧P).

Greedy Execution. The main idea behind the greedy execution of a GNFA is to maintain a
con�guration as an ordered list Vect(S × N × D∗) of tokens of the form (@, 8, g), which are ordered
according to their greedy priority. The con�guration includes only guarded states. Recall that the
pair (8, g) of the start position and the disambiguation trace is the greedy priority. The tokens are
ordered �rst according to start position and then according to the lexicographic order on D∗.

Since we are searching for a match that can start at any position in the input text, the automaton
has to be “restarted” at every step, in order to consider every start position. This needs to happen
until the �rst match is found (at some location [8, 9]). After this point, we know that we should not
continue “restarting” the automaton as it would consider possible matches of lower priority, which
will never be part of the output. The GNFA execution proceeds from left to right, consuming one
alphabet symbol at every step. Wemaintain the start and end position of the best match encountered
so far. The con�guration is always trimmed so that it only contains tokens that can potentially give
a better match than the best one seen so far. At every step, there are two possibilities: (1) no new
match is identi�ed, or (2) a new match is identi�ed, which is necessarily a strictly better match than
the best one seen before (therefore, the “best match” has to be updated to the newly found one).

Example 18. Consider the regex A = [bc]*c . Here, f stands for the character class {1, 2}. The
GNFA for f∗2 has states & = {0, 1, 2, 3, 4} with Δ(0) = (1, 3), Δ(1) = f , Δ(2) = 0, and Δ(3) = 2 .

0 1 2 3 4
Y / 0

Y / 1

f
Y

2

Table 1 shows the execution of the GNFA on the input string 0112121. For each pre�x F of the
input, the row “Greedy Con�guration” shows GCfg(F) and “Greedy Best Match” shows GBest(F).
We use the alternative notation [8, 9], g for a triple (8, 9, g) : N × N × D∗ representing a match.

POSIX Execution. In order to implement the POSIX semantics, the GNFA can be used but the
disambiguation traces become irrelevant. This means that we can essentially view the GNFA as a
classical Y-NFA. Recall that a POSIX token is of the form (@, 8) : S×N, where @ is the state and 8 is the
start position. As before, we record the start position because we are searching for a match that can
occur anywhere in the input string. This means that the automaton has to be “restarted” at every
step. For the POSIX semantics, priorities among tokens are determined purely by the start state:
if 8 < 8 ′, then the token (@, 8) is of higher priority than (@, 8 ′), because we prefer earlier matches.
For this reason, the overall con�guration can be represented as an element of Vect(S × N) or of
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Table 1. Examples of GNFA Execution.

Computation of GNFA for the regex [bc]*c

Position 0 1 2 3 4 5 6 7

Input a b b c b c b

Greedy Con�guration (1, 0, 0)
(3, 0, 1)

(1, 1, 0)
(3, 1, 1)

(1, 1, 00)
(3, 1, 01)

(1, 1, 000)
(3, 1, 001)

(1, 1, 0000)
(3, 1, 0001)

(1, 1, 00000)
(3, 1, 00001)

(1, 1, 000000)
(3, 1, 000001)

(1, 1, 0000000)
(3, 1, 0000001)

Greedy Best Match - - - - [1,4], 001 [1,4], 001 [1,6], 00001 [1,6], 00001

Computation of GNFA for the regex a|ab

Position 0 1 2 3 4 5

Input b a b a b

G. Cfg (1, 0, 0)
(3, 0, 1)

(1, 1, 0)
(3, 1, 1)

empty empty empty empty

G. Match - - [1,2],0 [1,2],0 [1,2],0 [1,2],0

P. Cfg (1, 0)
(3, 0)

(1, 1)
(3, 1)

(4, 1) empty empty empty

P. Match - - [1,2] [1,3] [1,3] [1,3]

Computation of GNFA for the regex a*(ab)?

Position 0 1 2 3

Input a a b

G. Cfg (1, 0, 0)
(4, 0, 10)

(1, 0, 00)
(4, 0, 010)

(1, 0, 000)
(4, 0, 0010)

empty

G. Match [0,0], 11 [0,1], 011 [0,2], 0011 [0,2], 0011

P. Cfg (1, 0)
(4, 0)

(1, 0)
(4, 0)
(5, 0)

(1, 0)
(4, 0)
(5, 0)

empty

P. Match [0,0] [0,1] [0,2] [0,3]

Vect(Set(S × N)) by grouping tokens with the same start position. The latter is a representation
where the tokens are partially ordered according to start position. An actual implementation could
use the data structure Vect(Vect(S × N)) instead of Vect(Set(S × N)) without issue.

Example 19. To demonstrate how the partial order in POSIX, as opposed to the linear order in
greedy, plays a role in the POSIX matching algorithm, consider the regular expression aa|aaa and
input text 000. The diagram below shows the GNFA for aa|aaa .

0 1 2 3 4 5 6 7
Y / 0

Y / 1

0 0
Y

0 0 0

Computation of GNFA for aa|aaa

Position 0 1 2 3
Input a a a
P. Cfg (1, 0)

(4, 0)
(2, 0)
(5, 0)
(1, 1)
(4, 1)

(6, 0)

P. Match - - [0,2] [0,3]

The table on the right shows the details of execution of the
POSIX algorithm on the regular expression aa|aaa and text
input 000. At position 1, the tokens (2, 0) and (5, 0) were pro-
duced by moving forward the tokens from position 0, and the
tokens (1, 1) and (4, 1) are added (i.e., “restart" the automaton
to consider possible matches starting at index 1) because no
match has been found yet. Observe that (2, 0) and (5, 0) are
incomparable, and so are (1, 1) and (4, 1). However, both (2, 0) and (5, 0) are of higher priority
than (1, 1) and (4, 1). Now, after moving forward the token (2, 0), POSIX reports a match [0, 2] at
position and discards the lower-priority tokens (1, 1) and (4, 1). Note that due to the incompara-
bility between (2, 0) and (5, 0), the token (5, 0) was not discarded but rather moved forward to
(6, 0). By processing (6, 0) in position 2, POSIX reports the �nal best match [0, 3] in position 3.

Example 20. The Thompson GNFA for the regular expression A = a|ab is the following:

0 1 2 3 4 5
Y / 0

Y / 1

0
Y

0 1

Table 1 shows the details of execution of the greedy and POSIX matching algorithms on the regular
expression a|ab and text input 10101. Note that the best matches eventually reported by the two
algorithms di�er. In particular, at position 1, both algorithms report the current best match [1,2].
However, the greedy algorithm returns early and disregards the token (3, 1, 1), which is of lower
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priority. The POSIX algorithm, on the other hand, moves forward the token (3, 1) before returning
and reporting the best match. Thus, at position 2, the greedy algorithm has run out of tokens, but
the POSIX algorithm still has one more token to process, which in the end results in a longer match.

Example 21. The (streamlined) Thompson GNFA for the regex A = a*(ab)? is the following:

0 1 2 3 4 5 6
Y / 0Y / 1

0

Y Y / 1

Y / 0 0 1

Table 1 shows the details of execution of the greedy and POSIX matching algorithms on the regular
expression a*(ab)? and input text 001. Again, the behavior of the two algorithms diverges. The key
observation here to understand the divergence is that, at position 1, the greedy algorithm processes
the token (1, 0, 00) and returns early to report the new best match [0, 2], 0011 without processing
the lower-priority token (4, 0, 010) at all. This early return causes the greedy algorithm to miss one
token at position 2 compared to the POSIX algorithm. By processing the token (5, 0) at position 2,
which the greedy algorithm misses, the POSIX algorithm �nds the longest match [0, 3]. Although
we see a di�erence in con�guration at as early as position 1, the extra token that POSIX has there
cannot be moved forward and thus has no impact on the divergence in the �nal output. It is the
missing token at position 2 that prevents the greedy algorithm from �nding the longest match.

4 STATIC ANALYSIS FOR ROBUSTNESS

In this section, we establish a characterization of non-robustness as a graph reachability property.
The main idea is that we should consider greedy and POSIX con�gurations where the tokens are
stripped down to contain only states (i.e., no start positions or disambiguation traces). This means
that a greedy con�guration is an ordered list of states, i.e., an element of Vect(&). Similarly, a POSIX
con�guration is an ordered list of nonempty sets of states, i.e., an element of Vect(Set(&)). Since no
state repetition is allowed in con�gurations, there is an exponential number of them. We consider
the product graph of greedy and POSIX con�gurations, which describes the parallel execution
according to both greedy and POSIX semantics. Our characterization of non-robustness in terms
of graph reachability (1) establishes that the problem of deciding robustness is in PSPACE and (2)
provides an algorithm for checking robustness. We also provide two performance optimizations for
the “base” reachability algorithm, which provide a substantial performance bene�t according to
our experimental evaluation of Section 5.

The algorithm for checking robustness is based on the idea that non-robustness can be identi�ed
by executing the GNFA (over all possible inputs) and identifying the case where the POSIX execution
reports a new match (better than all previously identi�ed matches) but the greedy execution does
not report a new match (see Proposition 24). In order to do this, the GNFA execution does not
need to record start positions and disambiguation traces in the tokens. It su�ces to only keep an
automaton state as a token, because we only need to indicate when a better match is found.

4.1 Stripped Greedy Execution

For the case of greedy GNFA execution, stripping the start positions and disambiguation traces
from the token means that a con�guration becomes a list of states (guarded states only, linearly
ordered, no duplicate states), i.e., elements of Vect(&), where & ⊆ S is the set of states of the
GNFA. The execution algorithm has to record whether a match has been found, because this a�ects
whether the GNFA should be restarted or not. The con�guration should only contain states that
can identify a match that is strictly better than all the ones identi�ed previously. This means that
when a new match is found during the consumption of an input symbol, then the lower priority
states that are awaiting processing should be discarded.
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// Depth-first search (DFS) for greedy disambiguation

1 Function AddG(A : GNFA(Σ) , ( : &mut Vect(S) , added : &mut Set(S) , @ : S):

2 if @ ∈ added then return false

3 added .insert(@) // insert @ into the set of “added” states

4 if Δ(@) = f ⊆ Σ then (.push(@) ; return false

5 else if Δ(@) = @′ ∈ & then return AddG(A, (, added, @′)

6 else if Δ(@) = (@′, @′′) ∈ & ×& then

7 B 1′ ← AddG(A, (, added, @′) ; if 1′ then return true // skip @′′ (lower priority)

8 return AddG(A, (, added, @′′)

9 else return true // @ is the final state

// Returns the guarded states that are Y-reachable from the initial state.

10 Function InitialG(A : GNFA(Σ)):
11 Vect(S) ( ← []; Set(S) added ← ∅ // no states have been added yet

12 B 1 ← AddG(A,&mut (,&mut added, 0) // 0 is the initial state

13 return ((,1)

// Returns the new configuration after consuming a symbol from the input.

14 Function NextG(A : GNFA(Σ) , matched : B, ( : Vect(S) , 0 : Σ):

15 Vect(S) ) ← []; Set(S) added ← ∅

16 for @ = ( [0], ( [1], . . . , ( [(.len − 1] do // process tokens in order of priority

17 if 0 ∈ Δ(@) then // @ is guarded, Δ is the transition function of A

18 if AddG(A,&mut),&mut added, @ + 1) then
19 return (), true) // skip the rest of the states (lower priority)

20 if ¬matched then B 1 ← AddG(A,&mut),&mut added, 0) // should be 1 = false

21 return (), false)

Fig. 2. Algorithm for identifying, at every step, whether a be�er greedy match is found.

The pseudocode of Fig. 2 gives the main ingredients of this process. The automaton A is meant
to be the Thompson GNFA of the given regular expression A . The function InitialG computes the
initial con�guration, which is the set of guarded states that are Y-reachable from the initial state
@in = 0 (or, potentially, a subset of these if there is an Y-path from the initial state to the �nal state
that is of higher priority than the Y-paths from the initial state to guarded states). The function NextG

takes as input the current con�guration ( : Vect(S), a Boolean argument matched : B indicating
whether a match has already been found, and the current input symbol 0 : Σ. It computes the
next con�guration by processing the tokens of ( in order of priority, i.e., from higher priority to
lower priority. A token @ : & moves along an edge @ →f @′ with @′ = @ + 1 when 0 ∈ f and then
all guarded states Y-reachable from @′ are added to the next con�guration. The processing of the
tokens in ( is terminated early if a match is found, in order to avoid paths of lower priority.

For a regular expression A , we de�ne the Boolean greedy denotation [A ]G : Σ∗ → B as follows:

[A ]G (Y) =

{

1, ifM(Y, A ) ≠ ∅

0, otherwise
[A ]G (F0) =

{

1, if ⟦A⟧G (F0) ≠ ⟦A⟧G (F)

0, otherwise

Lemma 14 implies that the following are equivalent:M(F, A ) ≠ ∅, ⟦A⟧G(F) ≠ None, Acc(F) ≠ ∅,

GBest(F) ≠ None, Matched(F) = 1. It follows that Matched(F) =
∨ |F |

8=0 [A ]G (F [0..8]). This is
shown by induction onF (the Boolean denotation gives 1 when the �rst match appears).

Let ( : Vect(S) andF ∈ Σ∗. For a GNFA A, we write ( ≈ GCfg(F) if ( is the (unique) stripped
representation of GCfg(F), that is: (1) ( has no duplicate states, (2) ( contains exactly the states
of the domain of GCfg(F), and (3) ( is ordered by the priorities speci�ed by GCfg(F).
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Lemma 22. Let A be the Thompson GNFA for the regular expression A . The following hold:

(1) Let ((, 1) = InitialG(A). Then, ( ≈ GCfg(Y) and 1 = [A ]G (Y).
(2) If ( ≈ GCfg(F), then ( ′ ≈ GCfg(F0) and 1 = [A ]G (F0), where (( ′, 1) is the output of the

function call NextG(A,Matched(F), (, 0).

Proof. We will only consider Part (2) and focus on the case Matched(F) = 1. (The case
Matched(F) = 0 is similar, with the only di�erence being that we need to also consider tokens
with start position |F0 |; the call to AddG in Line 20 adds those states.) The assumption ( ≈ GCfg(F)
says that ( is linearly ordered by the greedy priority GPr(F,@) of the states @ it contains and also
that GPr(F,@) < GBest(F). The function NextG performs one computation step of A. The crucial
property is that every state of GCfg(F0) can be reached from some state in GCfg(F).
Let @′ be a state in the domain of GCfg(F0), i.e., @′ is guarded and GPr(F0,@′) < GBest(F0).

Lemma 12 andMatched(F) = 1 imply thatGPr(F0,@′) = GPr(F,@) ·TY (@+1, @
′) for some guarded

state @ with @ →0 @ + 1. It su�ces to show that @ is in GCfg(F), i.e., GPr(F,@) < GBest(F).
Lemma 11 says that (i) GPr(F,@) ≪ GBest(F) or (ii) GPr(F,@) ≃ GBest(F) or (iii) GBest(F) ≪
GPr(F,@). Case (ii) implies that GPr(F0,@′) ≥ GBest(F) ≥ GBest(F0), which is a contradiction.
Case (iii) implies thatGPr(F0,@′) ≫ GBest(F) ≥ GBest(F0), which is a contradiction. So, case (i)
must hold, i.e., GPr(F,@) ≪ GBest(F) and therefore GPr(F,@) < GBest(F). We have established
that @ is in GCfg(F). This establishes that ( contains all the states that are needed to obtain ( ′.

With similar arguments, we can also show that ( contains all the states that are needed to identify
when GBest(F0) ≠ GBest(F), which is equivalent to [A ]G (F0) = 1.

Since NextG processes the states of ( in order of priority, it is ensured that the states of ( ′ appear
in order of priority. Moreover, the exploration stops as soon as the �nal state is reached, which
ensures that ( ′ contains states with priority < GBest(F0). Notice that �nding a �nal state amounts
to GBest(F0) < GBest(F) and a return value 1 = 1. So, 1 = [A ]G (F0). □

4.2 Stripped POSIX Execution

For POSIX GNFA execution, stripping the start positions from the tokens means that a con�guration
becomes a list of nonempty sets of states (guarded states only, no duplicate states over the entire
con�guration), i.e., elements of Vect(Set(&)), where & ⊆ S is the set of states of the GNFA. So,
a con�guration has the form [-1, . . . , -: ] where ∅ ≠ -8 ⊆ & for every 8 . The sets -1, . . . , -:

are pairwise disjoint. For every 8 , the states within -8 are considered to be unordered (hence
incomparable) because they have the same priority (the start position is the same for all of them). If
8 < 8 ′, then the states in -8 are of higher priority than the states in -8′ . The main di�erence between
the POSIX execution and the greedy execution has to do with the skipping of lower priority states.
Notice in NextP of Fig. 3 that when a match is found we do not skip states from the same set - ,
only those from sets of lower priority (contrast this with NextG in Fig. 2). Also, notice in AddP of
Fig. 3 that no state is skipped when �nding the Y-reachable states because they are of the same
priority (contrast this with AddG in Fig. 2). In contrast to the greedy case, a POSIX con�guration
is represented as a data structure of type Vect(Vect(&)) (it is not an issue for the algorithm to
represent Set(&) as Vect(&) because duplicate states are avoided over the entire con�guration).

For a regular expression A , we de�ne the Boolean POSIX denotation [A ]P : Σ∗ → B as follows:

[A ]P (Y) =

{

1, ifM(Y, A ) ≠ ∅

0, otherwise
[A ]P (F0) =

{

1, if ⟦A⟧P (F0) ≠ ⟦A⟧P (F)

0, otherwise

Lemma 17 implies that the following are equivalent:M(F, A ) ≠ ∅, ⟦A⟧P (F) ≠ None, Acc(F) ≠ ∅,

PBest(F) ≠ None, Matched(F) = 1. It follows thatMatched(F) =
∨ |F |

8=0 [A ]P (F [0..8]).
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// Depth-first search (DFS) for POSIX disambiguation

1 Function AddP(A : GNFA(Σ) , ( : &mut Vect(S) , added : &mut Set(S) , @ : S):

2 if @ ∈ added then return false

3 added .insert(@) // insert @ into the set of “added” states

4 if Δ(@) = f ⊆ Σ then (.push(@) ; return false

5 else if Δ(@) = @′ ∈ & then return AddP(A, (, added, @′)

6 else if Δ(@) = (@′, @′′) ∈ & ×& then

7 B 1′ ← AddP(A, (, added, @′) ; B 1′′ ← AddP(A, (, added, @′′) ; return 1′ ∨ 1′′

8 else return true // @ is the final state

9 Function InitialP(A : GNFA(Σ)):
10 Vect(S) ( ← []; Set(S) added ← ∅ // no states have been added yet

11 B 1 ← AddP(A,&mut (,&mut added, 0) // 0 is the initial state

12 return ( [( ], 1)

13 Function NextP(A : GNFA(Σ) , matched : B, ( : Vect(Vect(S)) , 0 : Σ):

14 Vect(Vect(S)) ) ← []; Set(S) added ← ∅

15 for - = ( [0], ( [1], . . . , ( [(.len − 1] do // process tokens in order of priority

16 Vect(S) . ← []; B 1 ← false // 1: match found within current priority?

17 for @ = - [0], - [1], . . . , - [- .len − 1] do // all tokens in - have the same priority

18 if 0 ∈ Δ(@) then // Δ is the transition function of A
19 if AddP(A,&mut .,&mut added, @ + 1) then 1 ← true

20 if . .len > 0 then ) .push(. )

21 if 1 then return (), true) // skip states of lower priority

22 if ¬matched then

23 Vect(S) . ← [];

24 B 1 ← AddP(A,&mut .,&mut added, 0) ; assert ¬1;

25 if . .len > 0 then ) .push(. )

26 return (), false)

Fig. 3. Algorithm for identifying, at every step, whether a be�er POSIX match is found.

Let ( : Vect(Vect(S)) and F ∈ Σ
∗. For a GNFA A, we write ( ≈ PCfg(F) if ( is a stripped

representation of PCfg(F), that is: (1) ( has no duplicate states, (2) ( contains exactly the states
of the domain of PCfg(F), (3) ( is ordered by the priorities speci�ed by PCfg(F), and (4) each
inner vector contains all states of ( with the same priority.

Lemma 23. Let A be the Thompson NFA for the regular expression A . The following hold:

(1) Let ((, 1) = InitialP(A). Then, ( ≈ PCfg(Y) and 1 = [A ]P (Y).
(2) If ( ≈ PCfg(F), then ( ′ ≈ PCfg(F0) and 1 = [A ]P (F0), where (( ′, 1) is the output of the

function call NextP(A,Matched(F), (, 0).

Proof. For Part (1), notice that the domain of PCfg(Y) is Reach(Y) = RY (@in), which is the set
of all states that are Y-reachable from @in. InitialP(A) calls AddP(A, [ ], ∅, @in), which performs
depth-�rst search to visit all states @ that are Y-reachable from @in. Out of these, only the guarded
states are placed in the output vector ( . The POSIX priority for every @ in ( is PPr(Y, @) = 0 by
Lemma 16. InitialP(A) returns [(] for this reason. AddP returns1 = 1 exactly when @�n ∈ RY (@in),
which means that 1 = [A ]P (Y). For Part (2), we will only consider the caseMatched(F) = 1 (the
case Matched(F) = 0 only di�ers in that states of priority |F0 | are added; see Lines 22–25 in the
code). Suppose that ( ≈ PCfg(F). As in the greedy case, the key observation is that every state
of PCfg(F0) can be reached from some state in ( . Let @′ be in the domain of PCfg(F0). That is,
@′ is guarded and PPr(F0,@′) ⪯ GBest(F0). Lemma 16 implies that PPr(F0,@′) = PPr(F,@) for
some guarded state @ with @ →0 @ + 1 and @′ ∈ RY (@ + 1). It follows that PPr(F,@) ⪯ GBest(F0) ⪯
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GBest(F) and therefore @ is in ( . We have thus established that ( contains all the states that are
needed to compute ( ′. Using Lemma 16 (last part) and similar reasoning, we can also check whether
PBest(F0) ≤ PBest(F) (which is equivalent to [A ]P (F0) = 1) by �nding a guarded state @ in
( with @ →0 @ + 1 and @�n ∈ RY (@ + 1). When this happens, NextP skips all inner vectors (type
Vect(S)) of lower priority. So, ( ′ ≈ PCfg(F0) and 1 = [A ]P (F0). □

4.3 Robustness Checking

Let A be a regular expression and A = (&,Δ) be its Thompson GNFA. The regex A is non-robust i�
there exists some input stringF ∈ Σ∗ for which the greedy and POSIX matching algorithms give
di�erent output. The only way that they can di�er is with greedy returning some location [8, 9]
and POSIX returning [8, 9 ′] for some 9 ′ > 9 . This means that the non-robustness is witnessed by
the pre�xF [0.. 9 ′]. As the greedy and POSIX execution perform a left-to-right pass overF [0.. 9 ′],
the �rst disagreement occurs exactly at the end: POSIX reports a new best match, but greedy does
not. This di�erence is based purely on reporting whether a new best match occurs or not, which is
exactly what the algorithms of Fig. 2 and Fig. 3 do. Proposition 24 (below) formalizes this fact using
the Boolean greedy and POSIX denotations from §4.1 and §4.2.

Proposition 24 (Robustness). For every regular expression A , ⟦A⟧G = ⟦A⟧P i� [A ]G = [A ]P.

Proof. The left-to-right direction is immediate. For the right-to-left direction suppose that [A ]G =

[A ]P. We will prove by induction that ⟦A⟧G (F) = ⟦A⟧P (F) for everyF ∈ Σ∗. First, we will deal with
the base caseF = Y. IfM(Y, A ) = ∅, then ⟦A⟧G (Y) = ⟦A⟧P (Y) = None. IfM(Y, A ) ≠ ∅, then ⟦A⟧G (Y) =
⟦A⟧P (Y) = Some( [0, 0]). So, in all cases, ⟦A⟧G (Y) = ⟦A⟧P (Y). For the step case, we consider a string
F0, where F ∈ Σ

∗ and 0 ∈ Σ. IfM(F0, A ) = ∅, then ⟦A⟧G (F0) = ⟦A⟧P (F0) = None. We assume
from now on thatM(F0, A ) ≠ ∅. IfM(F, A ) = ∅, then the new matches inM(F0, A ) all have
right endpoint |F0 |. Since both Greedy and POSIX prefer the leftmost match, it follows that both
⟦A⟧G (F0) and ⟦A⟧P (F0) are equal to Some( [8, |F0 |]) for some match [8, |F0 |] ∈ M(F0, A ) (i.e.,
8 is the least start position among the new matches). From this point on, we consider the case
M(F, A ) ≠ ∅. The induction hypothesis gives us that ⟦A⟧G (F) = ⟦A⟧P (F) = Some( [8, 9]) for some
match [8, 9] ∈ M(F, A ). The new matches inM(F0, A ) \M(F, A ) all have right endpoint |F0 |. We
examine cases: (I) If there exists a new match [8 ′, |F0 |] with 8 ′ < 8 (choose the one with the least
start position 8 ′), then both Greedy and POSIX prefer this over [8, 9]. So, ⟦A⟧G (F0) = ⟦A⟧P (F0) =
[8 ′, |F0 |]. (II) Otherwise, if [8, |F0 |] is a new match, then POSIX prefers it over [8, 9] because it is
longer. That is, ⟦A⟧P (F0) = Some( [8, |F0 |]). This means that [A ]P (F0) = 1 and hence [A ]G (F0) = 1

from the assumption. It follows that Greedy has a new preferred match, which must be [8, |F0 |],
since there are no other better matches. It follows that ⟦A⟧G (F0) = Some( [8, |F0 |]) = ⟦A⟧P (F0).
(III) Otherwise, all the new matches are of the form [8 ′, |F0 |] with 8 ′ > 8 , which means that
⟦A⟧G (F0) = ⟦A⟧P (F0) = Some( [8, 9]). The proof is thus complete. □

De�nition 25. Let A be a GNFA with states & . We de�ne the robustness graph of A. This is a
labeled transition system, denoted R(A) with vertices St = St� × St% × B. The set St� ⊆ Vect(&)
of stripped greedy con�gurations contains vectors ! = [@0, . . . , @:−1] where each state of& appears
in ! at most once. The set St% ⊆ Vect(Vect(&)) of stripped POSIX con�gurations contains lists of
the form ! = [(0, . . . , (ℓ−1] where each (8 is nonempty and each state appears in ! at most once.
The third (Boolean) component of St is meant to record whether a match has been encountered
so far. The initial vertex of R(A) is Init = ((,) , 11) with ((, 11) = InitialG(A) and (),12) =
InitialP(A). For a vertex ((,) ,<) and a letter 0 ∈ Σ, we de�ne X (((,) ,<), 0) = (( ′,) ′,< ∨ 11)
and out (((,) ,<), 0) = (11, 12), where (( ′, 11) = NextG(A,<, (, 0) and () ′, 12) = NextP(A,<,) , 0).
We also de�ne X : Σ∗ → St by X (Y) = Init and X (F0) = X (X (F), 0) for allF ∈ Σ∗ and 0 ∈ Σ.
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// Check whether the input regular expression A is disambiguation robust.

1 Function IsRobust(A : Reg(Σ)):

2 A ← Thompson GNFA for A

3 (Vect(S) (, B 11) ← InitialG(A) // initial configuration for greedy

4 (Vect(Vect(S)) ), B 12) ← InitialP(A) // initial configuration for POSIX

5 assert 11 = 12 // Greedy and POSIX always agree on input Y

6 B matched ← 11 // has a match been identified yet?

7 queue← [((,) ,matched, Y) ]; set ← {((,) ,matched) } // data structures for BFS

8 while queue.len > 0 do // BFS over the product greedy/POSIX execution graph

9 ((,) ,matched, F) ← queue.popFront()

10 for 0 ∈ Σ do

11 ((′, 11) ← NextG(A,matched, (, 0) // next configuration for greedy

12 () ′, 12) ← NextP(A,matched, (, 0) // next configuration for POSIX

13 assert ¬11 ∨ 12 // 11 ⇒ 12: if greedy finds a new best match, then so should POSIX

14 if 11 ≠ 12 then return Some(F0) // first disagreement between greedy and POSIX

15 matched ← matched ∨ 11
16 if ((′,) ′,matched) ∉ set then queue.pushBack( ((′,) ′,matched, F0)) ; set .insert( ((′,) ′,matched))

17 return None // robust (no witness of non-robustness)

Fig. 4. Algorithm for checking whether a regex has the same semantics using the greedy and POSIX policies.

Lemma 26 (Non-robustness). A regular expression A is non-robust i� there existsF ∈ Σ∗ and
0 ∈ Σ such that out (X (F), 0) = (11, 12) with 11 ≠ 12 in the robustness graph of AA .

Proof. We claim that X (F) ≈ (GCfg(F), PCfg(F),Matched(F)) for every F ∈ Σ
∗. This can

be established with a straightforward induction, using Lemmas 22 and 23. From this claim and
Lemmas 22 and 23 we obtain that out (X (F), 0) = ( [A ]G (F0), [A ]P (F0)) for every F ∈ Σ

∗ and
0 ∈ Σ. The regex A is non-robust i� ⟦A⟧G ≠ ⟦A⟧P, which is equivalent by Proposition 24 to
[A ]G (F) ≠ [A ]P (F) for someF ∈ Σ∗. Since [A ]G (Y) = [A ]P (Y), the witness of non-robustness must
be some nonemptyF0 ∈ Σ+. The result follows immediately. □

It follows from the previous discussion that �nding a witness for the non-robustness of A can be
done by exploring the vertices of the robustness graph R(AA ) until a disagreement is found. There
are polynomials ? (<) and @(<) such that |St� | ≤ 2? (<) and |St% | ≤ 2@ (<) , where< is the size of A .
So, the size of the robustness graph is |St | ≤ 2? (<)+@ (<)+1.

Theorem 27 (Computational Complexity). The problem IsRobust is PSPACE-complete.

Proof. Theorem 5 establishes PSPACE-hardness. We write IsNonRobust for the complement
of IsRobust. We describe a nondeterministic polynomial-space algorithm for IsNonRobust that
searches for a witness of non-robustness in the graph R(AA ) for a regex A : start with the initial
vertex of R(AA ) and then guess (and check) the path on someF ∈ Σ∗ (this is done by guessingF
letter by letter, not all at once, and following the path) and 0 ∈ Σ leading to a vertex X (F) with
out (X (F), 0) = (11, 12) and 11 ≠ 12. The correctness of the algorithm follows from Lemma 26. This
nondeterministic algorithm needs a polynomial amount of space to store the current vertex of the
robustness graph (which consists of a pair of con�gurations and a Boolean value). This establishes
that IsNonRobust belongs to the complexity class NPSPACE, which is equal to PSPACE [Savitch
1970]. So, IsNonRobust is PSPACE-complete, and therefore IsRobust is also PSPACE-complete. □

Theorem 28 (Robustness Analysis). IsRobust of Fig. 4 solves the IsRobust problem.
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Proof. The function IsRobust of Fig. 4 performs breadth-�rst search (BFS) in the robustness
graph of AA to �nd a non-robustness witness of minimum length. This approach is correct by
Lemma 26. Every tuple ((,) ,<,F) that is added to the search queue satis�es ((,) ,<) = X (F). The
algorithm searches for a tuple ((,) ,<,F) and a letter 0 ∈ Σ satisfying out (((,) ,<), 0) = (11, 12)
and 11 ≠ 12. This is exactly the non-robustness criterion of Lemma 26. □

The algorithm IsRobust of Fig. 4 requires both exponential time and exponential space. Even
though Savitch’s algorithm could give us a polynomial-space algorithm for IsRobust, it would
have much worse time complexity and would therefore be impractical. We use BFS as the graph
exploration algorithm in order to construct witnesses of minimal length (easier to understand).

Example of Robustness Analysis. Consider the regex A = 0∗ (01)? over the alphabet Σ = {0, 1}.
The Thompson GNFA for A is shown in Example 21. The vertices of R(AA ) explored by the static
analysis algorithm of Fig. 4 correspond to pairs GCfg(F) and PCfg(F) for certain wordsF ∈ Σ∗.

F Y 0 1 00 01

GCfg(F) |& [1, 4 ] [1, 4 ] [ ] [1, 4 ] [ ]

min<M(F, A ) [0, 0] [0, 1] [0, 0] [0, 2] [0, 1]

[A ]G (F) 1 1 0 1 0

PCfg(F) |& [ {1, 4 }] [ {1, 4, 5 }] [ ] [ {1, 4, 5 }] [ ]

min≺M(F, A ) [0, 0] [0, 1] [0, 0] [0, 2] [0, 2]

[A ]P (F) 1 1 0 1 1

These (stripped) con�gurations are
shown in the table on the right. The al-
gorithm starts from the empty string
Y, and continues the graph exploration
with the strings 0, 1, 00, and then
01. Since the string 1 produces empty
con�gurations, the static-analysis algo-
rithm does not need to check for extensions of 1. After consuming the strings 0 and 00, both the
greedy match and the POSIX match are updated, i.e, [A ]G(0) = [A ]P (0) = [A ]G (00) = [A ]P (00) = 1.
Upon consuming the string 1, neither the greedy nor the POSIX match are updated, i.e, [A ]G (1) =
[A ]P (1) = 0. Thus, these are not witnesses of non-robustness. On the other hand, we have
[A ]G (01) = 0 and [A ]P (01) = 1 since POSIX �nds the new match [0, 2] while the greedy match
[0, 1] remains the same. This makes the string 01 a witness for non-robustness. The algorithm
terminates when this witness is found and stops exploring the graph any further.

4.4 Performance Optimizations

The hardness result of Theorem 5 suggests that there are regular expressions that are di�cult to
analyze. For this reason, we explore some optimizations that can speed up the algorithm of Fig. 4
for some classes of regular expressions.

De�nition 29 (End-Ambiguity). We say that a regular expression A : Reg(Σ) (resp., automatonA)
is end-ambiguous if there is a string D ∈ Σ∗ and a nonempty string E ∈ Σ+ such that D,DE ∈ L(A )
(resp., A accepts both D and DE). We say that A is end-unambiguous if it is not end-ambiguous.

Proposition 30. If a regular expression is end-unambiguous, then it is also robust.

Proof. Suppose that A : Reg(Σ) is end-unambiguous. Assume for contradiction that A is not
robust. This means that there is a stringF ∈ Σ∗ for which the greedy best match occurs at some
location [8, 9] and the POSIX best match occurs at [8, 9 ′] for some 9 ′ > 9 . De�ne D = F [8 .. 9] and
E = F [ 9 .. 9 ′]. The string E is nonempty because 9 ′ > 9 . Moreover,F [8 .. 9] ∈ L(A ) andDE = F [8 .. 9 ′] ∈
L(A ), because they are matches. It follows that A is end-ambiguous, which is a contradiction. □

Given a regular expression A , checking end-ambiguity can be done in polynomial time. Let A be
an NFA for A (it can be a Thompson or Glushkov NFA, it does not matter). Since A and A denote
the same language, A is end-ambiguous i� A is end-ambiguous. We consider paths in the product
automaton A ×A. Notice that A is end-ambiguous i� there exists a path

(@0, @
′
0) →

01 (@1, @
′
1) →

02 · · · →0: (@: , @
′
: ) →

11 (@:+1, @
′
:+1) →

12 · · · →1ℓ (@:+ℓ , @
′
:+ℓ )
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in A ×A such that (1) @0, @′0 are initial states, (2) @: is a �nal state, (3) ℓ ≥ 1, and (4) @′
:+ℓ

is a �nal
state. This can be checked with a quadratic-time algorithm $ (<2), where< is the size of the regex.

Proposition 31 (Robustness Preservation). Let A be a regular expression, f be a character class,
and 0 ≤ < ≤ = be integers. If A is robust, then so are Af , Af∗, Af?, and Af{<,=}.

Proof. First, we will establish a useful claim: A regular expression is not robust A i� there exists
a stringF ∈ Σ∗ such thatF ∈ L(A ) and the best greedy match of A inF is at some location [0, 9]
with 9 < |F |. The right-to-left direction follows from the fact that the best POSIX match of A inF is
at location [0, |F |]. For the left-to-right direction, assume that A is not robust. This means that there
exists a string D ∈ Σ∗ such that the best greedy match of A in D is at some location [8, 9] and the best
POSIX match is at [8, 9 ′] for some 9 ′ > 9 . De�neF = D [8 .. 9 ′], which means thatF ∈ L(A ) (because
it is a match). The best greedy match of A inF is at location [0, 9 − 8] and 9 − 8 < |F | = 9 ′ − 8 .

The proofs for all cases Af , Af?, Af∗ and Af{<,=} rely on similar arguments. For this reason, we
give the representative proof for Af∗. Suppose that A is robust. Also, assume for contradiction that
Af∗ is not robust. It follows that there exists a stringF withF ∈ L(Af∗) such that the best greedy
match is at some location [0, :] with : < |F |. Let [0, 9] [ 9, :] be the decomposition that witnesses
this preferred greedy match, hence F [0.. 9] ∈ L(A ) and F [ 9 ..:] ∈ L(f∗). Let ℓ be the largest
position such thatF [0..ℓ] ∈ L(A ), which implies that andF [ℓ ..|F |] ∈ L(f∗). Since [0.. 9] [ 9 ..:] is
preferred (in the greedy semantics) over [0..ℓ] [ℓ ..|F |], then [0, 9] is a preferred match for A than
[0..ℓ]. It cannot be that 9 < ℓ , because then [0, 9] would be the preferred greedy match inF [0..ℓ],
which contradicts the robustness of A . So, we know that 0 ≤ ℓ ≤ 9 ≤ : < |F |. ButF [ 9 ..|F |] ∈ L(f∗)
and the decomposition [0, 9] [ 9, |F |] is preferred over [0, 9] [ 9, :], which is a contradiction. □

Using the notion of end-ambiguity (see De�nition 29 and Proposition 30) and the properties of
robustness preservation (Proposition 31), we can describe three versions of our robustness analysis:
(1) Version Base: The algorithm IsRobust of Fig. 4 (without any further optimization).
(2) Version Opt1: First, check if the input regex A is end-unambiguous. If so, then A is declared

to be robust. Otherwise, execute the algorithm IsRobust of Fig. 4.
(3) Version Opt2: This algorithm extends the version Opt1. First, check if the input regex A

is end-unambiguous. If so, then A is robust. If A is end-ambiguous, then de�ne A ′ to be the
“right-trimmed” regular expression that results from A by removing trailing subexpressions
of the form f, f∗, f?, f{<,=}. If A ′ is robust (check using IsRobust), then A is declared to be
robust. Otherwise, execute IsRobust on A .

5 EXPERIMENTS

We have implemented the robustness algorithm presented in Section 4 using the Rust programming
language. We perform an experimental evaluation to answer the following research questions:

(1) Does the issue of non-robustness arise in practice?
(2) Is our implementation practical for analyzing regular expressions that arise in real datasets?
(3) Do the optimizations of Section 4.4 provide a signi�cant performance bene�t?

There are many implementations of regex engines with a POSIX or greedy semantics. A list of
several such engines is compiled in Table 2. Though most of those engines claim to either return the
leftmost longest or the greedy match, there are some variations among them. For example, Berglund
et al. [2021] have shown that the Boost semantics for capturing groups di�ers from POSIX. We will
compare the POSIX and greedy semantics using the RE2 library [RE2 2024]. We have chosen RE2
because it supports both the POSIX and greedy semantics and it is a widely-used regex engine.

We use the following regex datasets that are derived from real applications: (1) the Snort [Roesch
1999; Snort 2024] and (2) Suricata benchmarks [Suricata 2024] that contain patterns for network
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Table 2. Supported semantics for some widely-used regex engines

Engine PCRE GREP TRE Boost C++ RE2 Rust Python Java Go Javascript .NET

POSIX No Yes Yes Yes No Yes No No No Yes No No
Greedy Yes No No Yes Yes Yes Yes Yes Yes Yes Yes Yes

tra�c, (3) the SpamAssassin benchmark [SpamAssassin 2024] for detecting spam email, and (4) the
RegexLib benchmark [RegexLib 2024]. In total, we have collected more than 10,000 regexes.

Experimental Setup. The experiments were executed in Ubuntu 20.04 on a desktop computer
equipped with an Intel(R) Xeon(R) W-2295 CPU (18 cores) and 128GB of RAM. We used Rust 1.59.0
and GCC/G++ 9.4.00. The RE2 library was installed from source available at [RE2 2024] with the
2023-11-01 release. For each experiment, we executed 10 trials and we report the mean.

Semantic Di�erences over Real Data. We have used two variants of RE2, which we call RE2-
Greedy and RE2-POSIX. They only di�er in the disambiguation policy that they use. We apply these
engines to our datasets using real input text to discover output disagreements that are caused by
the choice of disambiguation policy. This investigation has revealed that RE2-Greedy and RE2-
POSIX produce di�erent output on a large number of regexes in each dataset, and we present some
examples below. The discovered output di�erences are evidence that non-robustness is a problem
for regular expressions and input strings that arise in real applications.

Example 32. The regular expression ([a-z]{4,6})*([a-z]{2}==|[a-z]{3}=|[a-z]{4}) is from the Suri-
cata dataset. The input text \x0cmalwarebytes\x03org is taken from a real PCAP network �le. RE2-
Greedy tries to match the character class [a-z] inside [a-z]{4,6} as many times as possible (i.e.,
6 times). If [a-z]{4,6} is repeated twice to consume malwarebytes , then it is not possible to match
the whole regex. So, RE2-Greedy repeats [a-z]{4,6} once over malwar and then uses [a-z]{4} from
the nondeterministic choice over ebyt . This means that RE2-Greedy returns malwarbyt as the most
preferred match. RE2-POSIX returns the leftmost longest match, which is malwarebytes .

Example 33. The regex ((\d|[1-9]\d)\.){3}(\d|[1-9]\d|1\d\d) is from the Snort dataset. We will
use the input text utmb=64482928.4.8.1332657346264 , which is taken from a real PCAP �le. Both RE2-
Greedy and RE2-POSIX match the substring 28.4.8. with the subexpression ((\d|[1-9]\d)\.){3} .
For the second subexpression, RE2-Greedy chooses \d and returns the overall match 28.4.8.1 .
RE2-POSIX chooses 1\d\d and returns the match 28.4.8.133 , which is longer.

Table 3. Robustness Analysis: Total

running time in minutes.

Dataset Base Opt1 Opt2

RegexLib 0.59 0.45 0.11
Snort 23.76 3.14 0.79
SpamAssassin 17.49 13.35 1.16
Suricata 23.08 2.85 0.48

All datasets 64.93 19.80 2.55

Robustness Analysis over Real Datasets. To quantify
how often the robustness issue can occur, we perform a ro-
bustness analysis using the algorithm presented in Section 4
over the datasets. This analysis shows that there are hundreds
of non-robust regular expressions (>4% of all regexes) that
could potentially lead to disagreements for some input. For
each non-robust regex, we also produce a minimum length
witness input text for which the POSIX and Greedy seman-
tics disagree. Table 3 presents the performance results for the
analysis using the 3 variants of the algorithm presented in Section 4: the Base algorithm presented
in Fig. 4, and the two optimized versions Opt1 and Opt2 described in §4.4. Thanks to the analysis,
we are able to identify which regexes are non-robust in only a few minutes. Due to a limit on the
memory that can be used, a small number regexes cannot be analyzed. The non-robustness of these
regexes can arise using very simple input strings, as we will show in the examples below taken
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from the analysis results. Those results from Table 3 show that our static analysis can be used in
practice over real datasets.

Example 34. The regex (configdir|update|pluginmode)=.*(\|.+\||system) from Snort is recognized
as a non-robust regex by our static analysis with update=\|system\| as a minimal witness. The
greedy policy chooses update for the �rst subexpression (configdir|update|pluginmode) , then it tries
to consume asmany characters as possible with .* but has to backtrack tomatchwith the the second
choice system from the subexpression (\|.+\||system) . So, the greedy output is update=\|system .
The POSIX output is the entire witness update=\|system\| by matching Y with .* and taking the
�rst choice \| .+\| from the subexpression (\|.+\||system) .

Example 35. The regex ([1-9][0-9]{0,7})+ from RegexLib is another example of a non-robust
regular expression with 100000010 as a minimal witness. The greedy engine can only repeat
[1-9][0-9]{0,7} once, because the inner bounded repetition [0-9]{0,7} consumes 7 characters
(i.e., the maximum possible). So, the greedy match is 10000001 . The POSIX engine, on the other
hand, produces the leftmost longest match 100000010 by repeating [1-9][0-9]{0,7} twice.

regexlib snort spamassassin suricata

1e-02 1e+01 1e+04 1e-02 1e+01 1e+04 1e-02 1e+01 1e+04 1e-02 1e+01 1e+04

1e-02

1e+01

1e+04

base algorithm: running time (in msec)o
p
t1

: 
ru

n
n
in

g
 t
im

e
 (

m
se

c)

regexlib snort spamassassin suricata

1e-02 1e+01 1e+04 1e-02 1e+01 1e+04 1e-02 1e+01 1e+04 1e-02 1e+01 1e+04

1e-02

1e+01

1e+04

opt1 algorithm: running time (in msec)o
p
t2

: 
ru

n
n
in

g
 t
im

e
 (

m
se

c)

Fig. 5. Robustness Analysis: Comparison between the base algo-

rithm and the optimized versions Opt1, Opt2.

E�ects of performance optimiza-

tions. Fig. 5 shows the performance
of the basic version of the robust-
ness algorithm (called base). The ver-
sion that is called opt1 incorporates
the optimization discussed in §4.4 (it
checks for end-ambiguity �rst, which
is much less costly than robustness,
as checking for end-ambiguity can be
done in polynomial time). The version
opt2 builds upon opt1 by taking ad-
vantage of the preservation of robust-
ness also presented in §4.4. Fig. 5 con-
tains two rows of plots, one to com-
pare base against opt1, and one to compare opt1 versus opt2. Each point in the plots corresponds to
a regex. In total, the running time of the base algorithm presented in Table 3 is around 65 minutes
for all datasets, and is further reduced by a factor of about 3× down to 20 minutes with opt1 and by a
factor of around 25× thanks to opt2 down to a few minutes. Overall, the optimizations substantially
reduce the running time, helping to reduce the number of regexes timed out to only a few with
opt2. For the base algorithm, less than 3% of regexes cannot be analyzed, and this number goes
down to 0.5% for opt1 and 0.04% for opt2. These results demonstrate the signi�cant bene�t of the
optimizations, both in terms of running time and percentage of handled regexes.

6 RELATED WORK

Regex engines are either based on backtracking search (which may give rise to exponential running
time) or automata (in which case they need linear time). The worst-case behavior of backtracking
engines can be exploited to mount DoS attacks [Crosby and Wallach 2003; Davis et al. 2018; Staicu
and Pradel 2018]. In spite of this, backtracking engines are still prevalent due to their support of
extended features such as lookaround assertions and backreferences. Backtracking engines typically
follow the greedy semantic of [PCRE 2024]. Frisch and Cardelli [2004] gave a formal exposition of
this semantics by de�ning a linear order on parse trees. They also described a linear-time algorithm
for constructing parse trees. Nielsen and Henglein [2011] use the term bitcode to describe the binary
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encoding of a parse tree. Grathwohl et al. [2013] propose an algorithm for greedy parsing that uses
a smaller number of bits and Grathwohl et al. [2014] discuss a streaming version of the parsing
problem. Cox [2010] has described a version of the problem where only the match interval (not the
full parse tree) is of interest. The idea of tagging NFA transitions with priorities can be found in
[Berglund and van der Merwe 2017; Laurikari 2000; Okui and Suzuki 2011].
The notion of ambiguity in NFAs [Book et al. 1971] and algorithms for computing its degree

of growth have been studied in [Weber and Seidl 1991]. Ambiguity is relevant in the context of
producing parse trees for matches. Kearns [1991] uses an automata-based algorithm to produce a
linearized representation of a parse tree. Dubé and Feeley [2000] discuss how multiple parse trees
can be implicitly encoded in a grammar. Sakuma et al. [2012] and Berglund and van der Merwe
[2017] use transducers to produce parse trees. Borsotti et al. [2021]; Borsotti and Tro�movich [2021]
consider NFA-based parsing and submatch extraction algorithms.
The choice of the parse tree is especially relevant in the presence of capture groups which

extract the substring corresponding to the part of the subexpresion (sometimes refered to as
submatching). Three ways of avoiding the problem of ambiguity are discussed in [Brabrand and
Thomsen 2010]: rewriting ambiguous expressions away, introducing a restriction operator, and
lazy/greedy annotations to each operator. In [Berglund and van der Merwe 2017], expressions
with capture groups are formalized as transducers. They have extended their work [Berglund et al.
2017] to include atomic capture groups, a construct that prevents PCRE regexes from backtracking
to retry matching. Laurikari [2000] invented the Tagged Determnistic Finite Automata (TDFA)
to handle submatching. A version of this based on the POSIX policy was implemented by Chris
Kuklewicz in 2007 and it was later improved by Borsotti and Tro�movich [2021]. The state-of-the-art
implementation of TDFA-based algorithms is due to Tro�movich [2020].

Sulzmann and Lu [2012, 2014] use Brzozowski derivatives and partial derivatives for the purpose
of parsing, including the handling of capture variables. They discuss how ambiguity can be detected
in regular expressions using derivative-based techniques [Sulzmann and Lu 2016]. While the greedy
semantics precisely speci�es the most preferred parse tree, the disambiguation choices are less
clear for POSIX sub-matching. Tan and Urban [2023]; Urban [2023] have formalized these details
using Isabelle/HOL. Clarke and Cormack [1997] have considered shortest non-nested matches,
motivated by the extraction of information from SGML documents. Yamamoto [2019] describe
an e�cient algorithm for �nding all minimal matches. The semantics of capture groups in Boost
regexes is considered by Berglund et al. [2021].

7 CONCLUSION

We have investigated the novel problem of deciding disambiguation robustness. Given a regular
expression, this problem asks whether, for every input string, the match preferred by the greedy
matching policy is the same as the one preferred by the POSIX policy. We have shown that this
problem is PSPACE-complete and we have developed a static analysis algorithm for it. We have
implemented the algorithm, as well as two performance optimizations. We thus provide the �rst tool
that can identify non-robust regular expressions, which may be problematic for reuse in practice.
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