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Abstract
Regular pattern matching is used in numerous application

domains, including text processing, bioinformatics, and net-

work security. Patterns are typically expressed with an ex-

tended syntax of regular expressions. This syntax includes

the computationally challenging construct of bounded repe-

tition or counting, which describes the repetition of a pattern

a fixed number of times. We develop a specialized in-memory

hardware architecture that integrates counter and bit vector

modules into a state-of-the-art in-memory NFA accelerator.

The design is inspired by the theoretical model of nonde-

terministic counter automata (NCA). A key feature of our

approach is that we statically analyze regular expressions

to determine bounds on the amount of memory needed for

the occurrences of bounded repetition. The results of this

analysis are used by a regex-to-hardware compiler in order

to make an appropriate selection of counter or bit vector

modules. We evaluate our hardware implementation using

a simulator based on circuit parameters collected by SPICE

simulation in TSMC 28nm CMOS process. We find that the

use of counter and bit vector modules outperforms unfolding
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solutions by orders of magnitude. Experiments concerning

realistic workloads show up to 76% energy reduction and 58%

area reduction in comparison to CAMA, a recently proposed

in-memory NFA accelerator.
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1 Introduction
Regular pattern matching, where the patterns are expressed

with finite-state automata or regular expressions, has nu-

merous applications in text search and analysis [1], network

security [69], bioinformatics [9, 42], and runtime verification

[6, 7]. Various techniques have been developed for matching

regular patterns, many of which are based on the execution

of deterministic finite automata (DFAs) or nondeterministic

finite automata (NFAs). DFA-based techniques are generally

faster, as the processing of an input element requires a single

memory lookup, while NFA-based techniques are slower, as

they involve extending several execution paths when pro-

cessing one element. The advantage of NFAs over DFAs is

that they are typically more memory-efficient, and there

are cases where an equivalent DFA would unavoidably be

exponentially larger [34].
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Many applications require the processing of large and com-

plex NFAs on real-time streams of data collected from sen-

sors, networks, and various system traces. Energy efficiency

and memory efficiency (in terms of the memory capacity or

chip footprint needed for a given NFA) are highly desirable

for both high-performance computing and battery-powered

embedded applications. NFA processing requires frequent,

yet irregular and unpredictable, memory accesses on general-

purpose processors, leading to limited throughput and high

power on CPU and GPU architectures [27, 30, 61]. Field Pro-

grammable Gate Arrays (FPGAs) offer high speed through

hardware-level parallelism, but are often bottlenecked by

routing congestion [40, 66] and their high power, area and

cost prevent their use in mobile and embedded devices. Even

with digital application-specific integrated circuit (ASIC)

accelerators, the memory access bandwidth restricts the par-

allelism [31, 56]. The latest hardware technology that ad-

dresses these challenges is in-memory architecture, which

processes the NFA transitions directly inside memories with

massive parallelism and merged memory and computing

operations. For instance, the Automata Processor (AP) from

Micron [19, 64] outperforms x86 CPUs by 256×, GPGPUs

by 32×, and the digital accelerator XeonPhi by 62× in the

ANMLZoo benchmark suite [54, 61].

Classical regular expressions (regexes) involve operators

for concatenation ·, nondeterministic choice +, and iteration

(Kleene’s star)
∗
. They can be translated into NFAs whose

size is linear in the size of the regex [21, 57]. However, the

regexes used in practice have several additional features that

make them more succinct. One such feature is counting, writ-
ten as 𝑟 {𝑚,𝑛}, which is also called constrained or bounded
repetition. The pattern 𝑟 {𝑚,𝑛} expresses that the subpattern
𝑟 is repeated anywhere from 𝑚 to 𝑛 times. This counting

operator is ubiquitous in practical use cases of regexes. For

example, we have observed that in several datasets for net-

work intrusion detection (Snort [50] and Suricata [55]) and

motif search in biological sequences (Protomata [39, 42])

counting arises in the majority of the patterns. The naive ap-

proach for dealing with counting operators is to rewrite them

by unfolding. For example, 𝑟 {𝑛, 𝑛} is unfolded into 𝑟 · 𝑟 · · · 𝑟
(𝑛-fold concatenation) and results in an NFA of size linear

in 𝑛 (and therefore can produce a DFA of size exponential

in 𝑛). Since 𝑛 can grow very large, dealing with counting

is one of the main technical challenges for successfully us-

ing hardware-based approaches to execute practical regular

patterns.

Existing in-memory NFA architectures use this naive un-

folding method to handle counting operators. This leads to

the use of a large number of STEs
1
to support counting. In

AP [19] and CA (Cache Automaton) [54], each STE uses 256

1
STE stands for State Transition Element [19]. It is a hardware element that

roughly corresponds to the state of a homogeneous NFA. It contains a state

bit (to indicate whether the state is active or not) and a memory array that

represents a character class.

memory bits for 8-bit symbols. In the latest Impala [46] and

CAMA
2
[26] designs, each STE requires 16 to 32 memory bits.

Even with this improvement, a modest counting operator

with upper limit 1024 requires at least 16384 memory bits,

while the information required for implementing the opera-

tor may be only 10 bits in some cases. Unfolding counting

operators results in large memory and energy usage. To cir-

cumvent these problems, we explore software and hardware

co-design for integrating counter and bit vector modules

into a state-of-the-art in-memory NFA architecture.

Our design is inspired by an extension of NFAs with

counter registers called nondeterministic counter automata

(NCAs). In an NCA, a computation path involves not only

transitions between control states, but also the use of a finite

number of registers that hold nonnegative integers. Such

automata are a natural execution model for regexes with

counting, as the counters can track the number of repeti-

tions of subpatterns. When the counters are bounded, NCAs

are expressively equivalent to NFAs, but they can be expo-

nentially more succinct [34, 53]. Similar to how an NFA is

executed by maintaining the set of active states, an NCA

is executed by maintaining a set of pairs, which we call to-
kens, where the first component is the control state and the

second component specifies the values of the counters. A

key idea of our approach is that we can statically analyze

an NCA to determine which states can carry a large number

of tokens during execution. We call a control state counter-
unambiguous if it can only carry at most one token and

counter-ambiguous if it can carry more than one. In the case

of counter-unambiguity for a state 𝑞 with counter 𝑥 , we

know that we only need to record one counter value, which

means that we need only one memory location whose size

(in bits) is logarithmic in the range 𝑀 of possible counter

values. In the case of counter-ambiguity for 𝑞 with counter 𝑥 ,

we may have to record a large number of counter values (as

large as𝑀), and our insight is to use a bit vector 𝑣 of size𝑀 ,

where 𝑣 [𝑖] = 1 (resp., 𝑣 [𝑖] = 0) indicates the presence (resp.,

absence) of a token at 𝑞 with counter value 𝑖 . So, identifying

a state as counter-unambiguous enables a massive memory

reduction for this state from 𝑂 (𝑀) to 𝑂 (log𝑀).
We design a static analysis algorithm for checking the

counter-ambiguity of NCAs and regexes by performing a

systematic exploration of the space of reachable tokens to

identify the existence of some input string for which two

different tokens are placed on the same control state. This

may lead to a large search space (exponential in the size

of the regex), and the worst case is not easy to avoid since

the problem is NP-hard. To handle difficult instances that

involve large repetition bounds, we also provide an over-
approximate algorithm that gives an inconclusive output for

some instances, while still being able to identify cases of

2
CAMA abbreviates Content Addressable Memory (CAM) enabled Au-

tomata accelerator.
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counter-unambiguity for most instances from real bench-

marks. By combining the exact and over-approximate algo-

rithms, we can statically analyze within milliseconds the vast

majority of regexes in the benchmarks Snort [50], Suricata

[55], Protomata [42], SpamAssassin [3], and ClamAV [16].

Using the insights about NCA execution mentioned ear-

lier, we propose a hardware design that is based on existing

in-memory NFA architectures (AP, CA, Impala, CAMA) aug-

mented with (1) counter modules for counter-unambiguous

states, and (2) bit vector modules for counter-ambiguous

states. We use SPICE [52], an industry-standard simulator

for integrated circuits, to perform hardware simulation for

the counters and bit vectors and to integrate them into

the CAMA architecture. We also provide a compiler that

statically analyzes an input regex to determine counter-

(un)ambiguity and then creates a representation of an au-

tomaton with counters and bit vectors using the MNRL for-

mat [2] that can be used to program the hardware. Several

existing architectures like AP provide a counter module in

their design, but they typically do not provide a compiler that

translates regexes to hardware-recognizable programs. Also,

counter registers alone cannot deal with the challenging

instances of counting. Compared with prior works that do

not provide a bit vector module, this paper proposes a novel

design that can systematically handle counting and ensure

correct compilation in both the easy (requiring counters) and

difficult (requiring bit vectors) cases.

We modified the open-source simulator VASim [61] to

simulate the hardware performance of our counter- and bit-

vector-augmented CAMA design with implementation in

TSMC 28nm process. In microbenchmarks, we evaluated the

energy and area consumption of counters and bit vectors

against their unfolded counterparts. The results show that

our counter- and bit-vector-based design can reduce the en-

ergy usage by orders of magnitude and the area by large

margins. Furthermore, we evaluated the performance of the

augmented CAMA design using the Snort [50], Suricata [55],

Protomata [42], and SpamAssassin [3] benchmarks. For ap-

plications involving regexes with large counting bounds,

the results show as large as 76% energy reduction and 58%

area reduction. For regexes with small counting bounds, the

results show little to no overhead.

Contributions. The main contributions of this paper are

summarized below:

(1) We use the notion of counter-unambiguity in order

to identify instances of bounded repetition that can be han-

dled with a small amount of memory. We describe both an

exact and an over-approximate static analysis for counter-
(un)ambiguity which, when combined, allow us to efficiently

analyze the regexes that arise in several application domains.

(2) We propose a hardware design that augments the prior

NFA-based CAMA architecture [26] with counter and bit vec-

tor modules, which are inspired from the execution of NCAs

and the classification of states as counter-(un)ambiguous.

This architecture achieves substantial energy and area re-

ductions compared to prior designs.

(3) We provide a compiler that enables the high-level

programming of the hardware using POSIX-style regexes.

The compiler first performs the static analysis for counter-

(un)ambiguity and then leverages the analysis results for

producing a low-level description of the automaton.

2 Preliminaries
In this section, we will give a brief overview of several well-

known concepts, including regular expressions with count-

ing and nondeterministic counter automata (NCAs). We are

not interested in NCAs with unbounded counters (which

can recognize non-regular languages), so we focus on NCAs

with bounded counters. These automata are an appropriate

model for implementing regular expressions with counting.

Differently from most definitions of NCAs in the literature,

we allow each control state of the automaton to have a differ-

ent number of counters. This flexibility allows us to carefully

bound the memory needed for NCA execution.

Let Σ be a finite alphabet. A regular expression (or regex)
over Σ is given by the grammar 𝑟 ::= 𝜀 | 𝜎 | 𝑟 · 𝑟 | 𝑟 + 𝑟 | 𝑟∗ |
𝑟 {𝑚,𝑛}, where 𝜎 ⊆ Σ is a predicate over the alphabet and

𝑚,𝑛 are natural numbers. The expression 𝑟 {𝑚,𝑛} describes
the repetition of 𝑟 from 𝑚 to 𝑛 times, so we require that

0 ≤ 𝑚 ≤ 𝑛. We write 𝑟 {𝑛} for 𝑟 {𝑛, 𝑛}. The concatenation
symbol is sometimes omitted, i.e., we write 𝑟1𝑟2 instead of

𝑟1 · 𝑟2. The interpretation of a regex 𝑟 is a language ⟦𝑟⟧ ⊆ Σ∗,
which is defined in the standard way.

Notation for predicates: A predicate over the alphabet

is sometimes referred to as a character class. The predicate Σ
contains all symbols in the alphabet. When we use a symbol

𝑎 ∈ Σ in a regex, it should be understood as the singleton

predicate {𝑎} ⊆ Σ. We will also use the notation [𝑎1 . . . 𝑎𝑛] in
a regex to represent the predicate {𝑎1, . . . , 𝑎𝑛} ⊆ Σ. We write

[^𝑎1 . . . 𝑎𝑛] for the predicate Σ \ {𝑎1, . . . , 𝑎𝑛} that contains
all symbols aside from 𝑎1, . . . , 𝑎𝑛 . For a predicate 𝜎 ⊆ Σ, we
write 𝜎 = Σ \ 𝜎 to denote its complement.

We fix an infinite set CReg of counter registers or, sim-

ply, counters. We typically write 𝑥,𝑦, 𝑧, . . . to denote counter

registers. For a subset 𝑉 ⊆ CReg of counters, we say that a

function 𝛽 : 𝑉 → N, which assigns a value to each counter

in 𝑉 , is a 𝑉 -valuation.

Definition 2.1. Let Σ be a finite alphabet. A nondeterminis-
tic counter automaton (NCA) with input alphabet Σ is a tuple

A = (𝑄, 𝑅,Δ, 𝐼 , 𝐹 ), where
− 𝑄 is a finite set of states,
− 𝑅 : 𝑄 → P(CReg) is a function that maps each state to a

finite set of counters,

− Δ is the transition relation, which contains finitely many

transitions of the form (𝑝, 𝜎, 𝜑, 𝑞, 𝜗), where 𝑝 is the source

state, 𝜎 ⊆ Σ is a predicate over the alphabet,𝜑 ⊆ (𝑅(𝑝) →
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N) is a predicate over 𝑅(𝑝)-valuations, 𝑞 is the destination

state, and 𝜗 : (𝑅(𝑝) → N) → (𝑅(𝑞) → N),
− 𝐼 is the initialization function, a partial function defined

on the subset dom(𝐼 ) ⊆ 𝑄 of initial states that specifies
an initial valuation 𝐼 (𝑞) : 𝑅(𝑞) → N for each initial state

𝑞, and

− 𝐹 is the finalization function, a partial function defined

on the subset dom(𝐹 ) ⊆ 𝑄 of final states that specifies a
predicate 𝐹 (𝑞) ⊆ 𝑅(𝑞) → N for each final state 𝑞.

We say that a state 𝑞 ∈ 𝑄 is pure if 𝑅(𝑞) = ∅, that is, it has
no counter associated with it.

We remark that the states in an NCA of Definition 2.1 do

not necessarily have the same counters. In fact, some states

may not have any counter at all. In a transition (𝑝, 𝜎, 𝜑, 𝑞, 𝜗),
we will call the predicate 𝜑 a guard because it may restrict

a transition based on the values of the counters, and we

will call the function 𝜗 an action, because it describes how
to assign counter values in the destination state given the

counter values in the source state.

We convert regexes (with counting) to NCAs that rec-

ognize the same language using a variant of the Glushkov

construction [20, 21]. In contrast to Thompson’s construc-

tion [57], Glushkov’s construction results in 𝜀-free automata

that are also homogeneous, i.e., all incoming transitions of a

state are labeled with the same predicate over the alphabet.

We present below several examples of NCAs.

Example 2.2. Consider the regex 𝑟1 = Σ∗𝜎1𝜎2{𝑛} with

𝑛 ≥ 1, where 𝜎1, 𝜎2 are predicates over the alphabet
3
. The

following automaton recognizes the language of 𝑟1:

𝑞1 𝑞2 𝑞3 : 𝑥

Σ

𝜎1
𝜎2 / 𝑥 B 1

𝜎2, 𝑥 < 𝑛 / 𝑥++

𝑥 = 𝑛

The automaton above has three states: 𝑞1, 𝑞2, and 𝑞3. We

write 𝑞3 : 𝑥 to indicate that 𝑅(𝑞3) = {𝑥}. Notice that 𝑞1 has

no annotation with counters, which means that 𝑅(𝑞1) = ∅
(i.e., 𝑞1 is pure). We annotate each edge 𝑝 → 𝑞 with an

expression of the form 𝜎, 𝜑 /𝜗 , where 𝜎 is a predicate over Σ,
𝜑 is a guard over the counters of 𝑝 , and 𝜗 is an assignment

for the counters of 𝑞 using the counters of 𝑝 . If the guard

𝜑 is omitted, then it is always true. The action 𝜗 is omitted

only when 𝑅(𝑞) ⊆ 𝑅(𝑝), and the omission indicates that

the counters 𝑅(𝑞) retain the values from the previous state.

We can also indicate this explicitly by writing “𝑥 B 𝑥”. We

write “𝑥 = 𝑛” for the guard that checks whether the value

of counter 𝑥 is equal to 𝑛, and we write “𝑥 B 𝑛” to denote

the assignment (action) of the value 𝑛 to the counter 𝑥 . We

use double circle notation to indicate that a state is final (see

state 𝑞3 above). An arrow emanating from a final state 𝑞 is

3
In order to make the example more concrete, suppose that 𝜎1 = [𝑎𝑏 ] and
𝜎2 = [^𝑎]. So, the regular expression 𝑟1 is the same as .∗ [ab] [^a] {n} using
POSIX notation [38]. Note that Σ∗ is the same as .∗ in POSIX notation.

annotated with the predicate 𝐹 (𝑞) over counter valuations
(recall that 𝐹 is the finalization function).

The regex 𝑟2 = Σ∗𝜎1 (𝜎2𝜎3){𝑚,𝑛}𝜎4 with 1 ≤ 𝑚 ≤ 𝑛 is

recognized by the following automaton:

𝑞1 𝑞2 𝑞3 : 𝑥 𝑞4 : 𝑥 𝑞5

Σ

𝜎1
𝜎2 / 𝑥 B 1

𝜎3

𝜎2, 𝑥 < 𝑛 / 𝑥++
𝜎4,𝑚 ≤ 𝑥 ≤ 𝑛

The regex 𝑟3 = 𝜎1{𝑚}Σ∗𝜎2{𝑛} with𝑚,𝑛 ≥ 1 is recognized

by the following automaton:

𝑞1 𝑞2 𝑞3 : 𝑥 𝑞4 : 𝑥
𝜎1 / 𝑥 B 1

𝜎1, 𝑥 <𝑚 / 𝑥++

Σ, 𝑥 =𝑚

𝜎2, 𝑥 =𝑚 / 𝑥 B 1

Σ

𝜎2 / 𝑥 B 1

𝜎2, 𝑥 < 𝑛 / 𝑥++

𝑥 = 𝑛

All automata so far use one counter. For the regex 𝑟4 =

Σ∗𝜎1 (𝜎2 (𝜎3𝜎4){𝑚,𝑛}𝜎5){𝑘}𝜎6 with 1 ≤ 𝑚 ≤ 𝑛 and 𝑘 ≥ 1

we need two counters. See Fig. 1.

Nondeterministic semantics. LetA be anNCA. A token
forA is a pair (𝑞, 𝛽), where 𝑞 is a state and 𝛽 : 𝑅(𝑞) → N is a

counter valuation for 𝑞. The set of all tokens forA is denoted

by Tk(A). For a letter 𝑎 ∈ Σ, we define the token transition
relation →𝑎

on Tk(A) as follows: (𝑝, 𝛽) →𝑎 (𝑞,𝛾) if there
is a transition (𝑝, 𝜎, 𝜑, 𝑞, 𝜗) ∈ Δ with 𝑎 ∈ 𝜎 such that 𝛽 ∈ 𝜑

and 𝛾 = 𝜗 (𝛽). A token (𝑞, 𝛽) is initial if the state 𝑞 is initial.

A token (𝑞, 𝛽) is final if the state 𝑞 is final and 𝛽 ∈ 𝐹 (𝑞). A
run of A on a string 𝑎1𝑎2 . . . 𝑎𝑛 ∈ Σ∗ is a sequence

(𝑞0, 𝛽0)
𝑎1−−→ (𝑞1, 𝛽1)

𝑎2−−→ (𝑞2, 𝛽2)
𝑎3−−→ · · · 𝑎𝑛−−→ (𝑞𝑛, 𝛽𝑛),

where each (𝑞𝑖 , 𝛽𝑖 ) is a token, 𝑞0 is an initial state and 𝛽0 =

𝐼 (𝑞0), and (𝑞𝑖−1, 𝛽𝑖−1) →𝑎 (𝑞𝑖 , 𝛽𝑖 ) for every 𝑖 = 1, . . . , 𝑛. A

run is accepting if it ends with a final token. The NCA A
accepts a string if there is an accepting run on it. We write

⟦A⟧ ⊆ Σ∗ for the set of strings that A accepts.

Notice that, for a NCA A, the set of tokens Tk(A) to-
gether with the transition relations→𝑎

forms a labeled tran-

sition system. The family of transition relations (→𝑎)𝑎∈Σ can
be represented as a ternary relation→ ⊆ Tk(A)×Σ×Tk(A).

Notation for tokens: For a pure state 𝑞 (i.e., a state with

no counter, see Definition 2.1), there is only one valuation,

denoted 0N : ∅ → N, which carries no information. So, we

will often abuse notation and simply write 𝑞 for the token

(𝑞, 0N). Similarly, for a state 𝑞 with one counter, i.e., 𝑅(𝑞) =
{𝑥} for some 𝑥 ∈ CReg, a valuation 𝛽 (of type {𝑥} → N) for
𝑞 specifies only one value 𝑐 = 𝛽 (𝑥) for the unique variable
𝑥 for 𝑞. For this reason, we will sometimes write (𝑞, 𝑐) for a
token for the state 𝑞.

Semantics using configurations. Let A be an NCA. A

configuration for A is a set of tokens for A. We write C(A)
for the set of all configurations for A. Define the configura-

tion transition function 𝛿 : C(A) × Σ → C(A) as follows:

𝛿 (𝑆, 𝑎) = {(𝑞,𝛾) | (𝑝, 𝛽) →𝑎 (𝑞,𝛾) for some (𝑝, 𝛽) ∈ 𝑆}.
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𝑞1 𝑞2 𝑞3 : 𝑥 𝑞4 : 𝑥,𝑦 𝑞5 : 𝑥,𝑦 𝑞6 : 𝑥 𝑞7

Σ

𝜎1
𝜎2 / 𝑥 B 1 𝜎3 / 𝑦 B 1

𝜎4

𝜎3, 𝑦 < 𝑛 / 𝑦++

𝜎5,𝑚 ≤ 𝑦 ≤ 𝑛

𝜎2, 𝑥 < 𝑘 / 𝑥++

𝜎6, 𝑥 = 𝑘

Figure 1. NCA with two counters (𝑥 and 𝑦) for the regex Σ∗𝜎1 (𝜎2 (𝜎3𝜎4){𝑚,𝑛}𝜎5){𝑘}𝜎6 with 1 ≤ 𝑚 ≤ 𝑛 and 𝑘 ≥ 1.

We extend the transition function to 𝛿 : C(A)×Σ∗ → C(A)
by 𝛿 (𝑆, 𝜀) = 𝑆 and 𝛿 (𝑆, 𝑥𝑎) = 𝛿 (𝛿 (𝑆, 𝑥), 𝑎) for every 𝑥 ∈ Σ∗
and 𝑎 ∈ Σ. Let 𝑆0 be the set of all initial tokens, which we

call the initial configuration, and define [A] : Σ∗ → C(A)
by [A](𝑥) = 𝛿 (𝑆0, 𝑥). This semantics coincides with ⟦A⟧ in

the following sense: for every 𝑥 ∈ Σ∗, 𝑥 ∈ ⟦A⟧ iff [A](𝑥)
contains some final token.

Bounded counters. Let A be a NCA, and 𝑛 ∈ N be a

constant. We say that a token (𝑞, 𝛽) is 𝑛-bounded if 𝛽 (𝑥) ≤ 𝑛

for every counter 𝑥 ∈ 𝑅(𝑞). We also say that A (resp., a

state 𝑞) is 𝑛-bounded if every token (resp., token on state

𝑞) reachable from some initial token is 𝑛-bounded. Finally,

the NCA A is said to have bounded counters if there exists
some constant 𝑛 ∈ N such that A is 𝑛-bounded. Notice that

NCAs with bounded counters have the same expressiveness

as finite-state automata (i.e., DFAs and NFAs), but they are

potentially more succinct [53].

As mentioned earlier, the automata that we consider here

are obtained from regexes with counting using the Glushkov

construction. A consequence of this is that every counter

incrementation action of the form 𝑥++ is guarded by some

test 𝑥 < 𝑛 because it corresponds to a subexpression of

the form 𝑟 {𝑚,𝑛}. It follows that an automaton thus con-

structed has bounded counters. Moreover, for every con-

trol state and every counter, we can read an upper bound

from the automaton. For example, in Figure 1, the counter

𝑥 is bounded above by 𝑘 (at all states 𝑞3, 𝑞4, 𝑞5, 𝑞6) because

(𝑞6, 𝜎2, “𝑥 < 𝑘”, 𝑞3, “𝑥++”) is the only transition that incre-

ments 𝑥 . Similarly, the counter 𝑦 is bounded above by 𝑛 (at

all states𝑞4, 𝑞5) because (𝑞5, 𝜎3, “𝑦 < 𝑛”, 𝑞4, “𝑦++”) is the only
transition that increments 𝑦.

3 Static Analysis
In this section, we will see how to perform a static analy-

sis over regexes to check counter-(un)ambiguity. It is well-

known that the presence of counting in regexes can cause

a blow-up in the amount of memory that is needed for the

streamingmembership problem (checking if a stringmatches

the regex in a single left-to-right pass) [34] (more results

about regexes with counting are given in [35, 53]). There

are, however, many cases that do not exhibit this worst-case

behavior. In this section, we will describe a static analysis for

identifying occurrences of bounded repetition {𝑚,𝑛} which
can be implemented using memory that is logarithmic in 𝑛.

This enables a significant reduction in thememory that needs

to be reserved for the membership problem. In order to iden-

tify the easier cases of bounded repetition, we use the con-

cept of counter-unambiguity, which informally says that the

nondeterminism of the automaton is constrained. We then

develop two algorithms for deciding counter-unambiguity

(one exact and one approximate), and we provide experimen-

tal results showing that they are effective in practice.

Let A = (𝑄, 𝑅,Δ, 𝐼 , 𝐹 ) be an NCA. For a state 𝑞 ∈ 𝑄 and

a subset 𝑇 ⊆ Tk(A) of tokens for the automaton, define

𝑇 |𝑞 = 𝑇 ∩ ({𝑞} × (𝑅(𝑞) → N)). That is, 𝑇 |𝑞 contains exactly

those tokens of 𝑇 whose first component is the state 𝑞. The

operational intuition is that [A](𝑥) |𝑞 is the set of tokens

that we get at state 𝑞 when we execute the automaton A on

input 𝑥 . When it is possible to have more than two tokens

on the same state 𝑞 after consuming an input string, we say

that the state exhibits counter-ambiguity. We will now define

this concept and other related notions more formally.

Definition 3.1 (Degree of Counter-Ambiguity). Let A
be an NCA with bounded counters and 𝑞 be a state. The

(counter-ambiguity) degree (which we will also call degree of
counter-ambiguity) of 𝑞 is defined as

degree(𝑞) = sup𝑥 ∈Σ∗
(
size of [A](𝑥) |𝑞

)
.

We say that 𝑞 is counter-unambiguous when degree(𝑞) ≤ 1,

and that 𝑞 is counter-ambiguous when degree(𝑞) ≥ 2.

Notice that if the degree of a state 𝑞 is equal to zero, then

the state 𝑞 is unreachable.

3.1 Deciding Counter-Ambiguity
According to Definition 3.1, the degree of counter-ambiguity

of a state 𝑞 is the maximum number of different tokens that

can end up at 𝑞 during a computation. A state 𝑞 is counter-

ambiguous iff there is a string 𝑎1𝑎2 . . . 𝑎𝑛 ∈ Σ∗ and two

different runs on 𝑎1𝑎2 . . . 𝑎𝑛

(𝑞0, 𝛽0)
𝑎1−−→ (𝑞1, 𝛽1)

𝑎2−−→ (𝑞2, 𝛽2)
𝑎3−−→ · · · 𝑎𝑛−−→ (𝑞𝑛, 𝛽𝑛)

(𝑞′
0
, 𝛽 ′

0
) 𝑎1−−→ (𝑞′

1
, 𝛽 ′

1
) 𝑎2−−→ (𝑞′

2
, 𝛽 ′

2
) 𝑎3−−→ · · · 𝑎𝑛−−→ (𝑞′𝑛, 𝛽 ′𝑛),

such that 𝑞 = 𝑞𝑛 = 𝑞′𝑛 and 𝛽𝑛 ≠ 𝛽 ′𝑛 .
Let 𝐺 be the labeled transition system of tokens Tk(A)

and token transitions of the form 𝑡1 →𝑎 𝑡2, where 𝑡1, 𝑡2 are

tokens and 𝑎 ∈ Σ. Define 𝐺2 = 𝐺 ×𝐺 to be the product tran-
sition system with states Tk(A) × Tk(A), which contains a

transition ⟨𝑡1, 𝑡2⟩ →𝑎 ⟨𝑡 ′
1
, 𝑡 ′

2
⟩ iff 𝑡1 →𝑎 𝑡 ′

1
and 𝑡2 →𝑎 𝑡 ′

2
. A pair

⟨𝑡1, 𝑡2⟩ is initial if both 𝑡1 and 𝑡2 are initial tokens. According
to the characterization of the previous paragraph, a state

𝑞 of A is counter-ambiguous iff there exists a path in 𝐺2
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that ends with some pair ⟨(𝑞, 𝛽), (𝑞, 𝛽 ′)⟩, where 𝛽 ≠ 𝛽 ′. This
idea can be extended to characterize the situation where

a state 𝑞 has degree at least 𝑑 ≥ 2: there exists a path in

the 𝑑-fold Cartesian product 𝐺𝑑
that ends with some tuple

⟨(𝑞, 𝛽1), . . . , (𝑞, 𝛽𝑑 )⟩, where 𝛽1, . . . , 𝛽𝑑 are all distinct.

Algorithm for Counter-Ambiguity: When the product

transition system 𝐺𝑑
is finite, we can decide whether the

counter-ambiguity degree of a state is ≥ 𝑑 with a straightfor-

ward reachability algorithm. For deciding counter-ambiguity,

we check whether the degree is ≥ 2, and therefore it suffices

to consider only𝐺2
. Notice that for the bounded counter au-

tomata that we consider,𝐺𝑑
is always finite. We just need to

exercise care to avoid a blowup in the number of transitions.

In our automata, the transitions are annotated with predi-

cates over the alphabet, not symbols of the alphabet. This is a

succinct way to represent transitions, and we want to main-

tain such a representation in the graphs 𝐺𝑑
(assuming that

we also use such a representation for 𝐺). This can be done

by considering the intersections of predicates and checking

whether they are empty. More specifically, for every pair of

transitions 𝑡1 →𝜎1 𝑡 ′
1
and 𝑡2 →𝜎2 𝑡 ′

2
, we add the transition

⟨𝑡1, 𝑡2⟩ →𝜎1∩𝜎2 ⟨𝑡 ′
1
, 𝑡 ′

2
⟩ in 𝐺2

when 𝜎1 ∩ 𝜎2 is nonempty.

Example 3.2. We will discuss here how to check counter-

(un)ambiguity for the regex Σ∗𝜎{2}. First, we construct the
NCA for this regex, which is seen below:

𝑞1 𝑞2 : 𝑥

Σ

𝜎 / 𝑥 B 1

𝜎, 𝑥 < 2 / 𝑥++

𝑥 = 2

Based on this NCA, we construct the transition system of

tokens seen below, where 𝑞1 is abbreviation for the token

(𝑞1, 0N) (𝑞1 is a pure state), and (𝑞2, 𝑛) is abbreviation for the

token (𝑞2, 𝑥 ↦→ 𝑛) (the counter assignment maps 𝑥 to 𝑛).

𝑞1 (𝑞2, 1) (𝑞2, 2)
Σ

𝜎 𝜎

The token transition system is essentially an NFA, where the

final state (token) is indicated with a double circle.

To check the counter-ambiguity of a state 𝑞, we build the

product transition system and check whether there exists a

path that ends in a pair of tokens ⟨(𝑞, 𝛽), (𝑞, 𝛽 ′)⟩ with 𝛽 ≠ 𝛽 ′.
The figure below shows the product transition system where

the presence of the pair ⟨(𝑞2, 1), (𝑞2, 2)⟩ or ⟨(𝑞2, 2), (𝑞2, 1)⟩
(colored in gray) witnesses the counter-ambiguity.

⟨𝑞1, 𝑞1 ⟩ ⟨𝑞1, (𝑞2, 1) ⟩ ⟨𝑞1, (𝑞2, 2) ⟩

⟨(𝑞2, 1), 𝑞1 ⟩ ⟨(𝑞2, 1), (𝑞2, 1) ⟩ ⟨(𝑞2, 1), (𝑞2, 2) ⟩

⟨(𝑞2, 2), 𝑞1 ⟩ ⟨(𝑞2, 2), (𝑞2, 1) ⟩ ⟨(𝑞2, 2), (𝑞2, 2) ⟩

Σ

𝜎

𝜎
𝜎

𝜎

𝜎

𝜎
𝜎 𝜎

Because of symmetry, some states and transitions can be

safely removed from the product automaton. Notice, for

example, that we do not need to explore both ⟨(𝑞2, 1), 𝑞1⟩

and ⟨𝑞1, (𝑞2, 1)⟩. Therefore, in future examples, we will omit

part of the product automaton.

The exact analysis halts as soon as it finds a token pair

that witnesses counter-ambiguity. So, not all pairs are gener-

ated during the static analysis, unless the regex is counter-

unambiguous.

Consider a regex 𝑟 that contains an occurrence of counting

of the form (𝑎𝑏𝑐𝑑){𝑚,𝑛}. When the repetition bounds are

sufficiently large, in the automaton A for 𝑟 , the four states

that correspond to 𝑎𝑏𝑐𝑑 are either all counter-unambiguous

or they are all counter-ambiguous. For this reason, the notion

of counter-(un)ambiguity can be defined with respect to

instances of bounded repetition in regexes. We will also

call a regex counter-ambiguous if it contains at least one

occurrence of bounded repetition that is counter-ambiguous

(equivalently, the NCA for the expression has at least one

counter-ambiguous state).

Lemma3.3 (CheckingCounter-Ambiguity IsHard). Let

CAmbiguity be the following problem: Given a regex 𝑟 as

input, is 𝑟 counter-ambiguous? CAmbiguity is NP-hard.

Proof. Consider the alphabet Σ = {𝑎, 𝑏, #}. We will give a

polynomial-time reduction from the subset sum problem to

CAmbiguity. Let 𝑆 = {𝑛1, 𝑛2, . . . 𝑛𝑚} be a set of natural num-

bers and 𝑇 be a natural number. Recall that the subset sum

problem asks whether there is a subset 𝑆 ′ ⊆ 𝑆 of numbers

whose sum is equal to 𝑇 . Consider the regex

(((𝑎{𝑛1} + 𝜀) · · · (𝑎{𝑛𝑚} + 𝜀)#𝑏) + (𝑎{𝑇 }#𝑏𝑏))𝑏{2}.
We focus on the rightmost occurrence of bounded repeti-

tion (i.e., 𝑏{2}). We claim that this occurrence is counter-

ambiguous if and only if there is a subset 𝑆 ′ ⊆ 𝑆 whose

sum is 𝑇 . Consider the corresponding Glushkov automaton

and the state 𝑞 which leads to the final state at the end that

recognizes the 𝑏{2}. A word witnessing a path to 𝑞 would

have to be of the form 𝑎𝑥#𝑏𝑦 for some natural numbers 𝑥,𝑦.

If 𝑥 ≠ 𝑇 , then the word has no path through the branch

(𝑎{𝑇 }#𝑏𝑏). So, the only value it can induce on the counter

at the end is (𝑦 − 2). If 𝑥 = 𝑇 , and there exists a subset 𝑆 ′ of
𝑆 such that

∑
𝑆 ′ = 𝑇 , then 𝑎{𝑇 }#𝑏𝑏𝑏 could either take the

path (𝑎{𝑇 }#𝑏𝑏) and set the counter to 1, or it could take the

other path and set the counter to 2. If 𝑥 = 𝑇 and there is

no such subset 𝑆 ′, then the only path the word can take is

through the branch (𝑎{𝑇 }#𝑏𝑏) which would set the counter

to (𝑦 − 2). □

3.2 Over-Approximate Analysis
In §3.1, we presented an (exact) algorithm for deciding the

counter-(un)ambiguity of regexes and NCAs. The algorithm

operates on the transition system of tokens of anNCA,whose

size can be exponential in the size of the regex, because of

the counter valuations. For example, the regex Σ∗ · 𝑎 · Σ{𝑛}
has size Θ(log𝑛) (because the repetition bound 𝑛 is repre-

sented succinctly in binary or decimal notation) and the
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corresponding token transition system has size Θ(𝑛). From
this it follows that the exact algorithm may need exponential

time in the worst case. Unfortunately, this worst-case behav-

ior is not easy to avoid given the NP-hardness of the prob-

lem (Lemma 3.3). For this reason, we propose here a heuris-

tic algorithm that performs an “over-approximate” analysis,

which can give two outputs: it either declares that a state is

counter-unambiguous, or it says that the analysis is incon-

clusive. In other words, there are cases where the algorithm

may suspect that a state is counter-ambiguous, but it cannot

conclusively declare it so.

The idea is to over-approximate all occurrences of {𝑚,𝑛}
(constrained repetition) with

∗
(unconstrained repetition),

except for the one that we are analyzing. If we think of

this transformation in terms of NCAs, we see that it adds

more paths to the token transition graph, because more tran-

sitions are now enabled. A consequence of this is that if

the over-approximate automaton is counter-unambiguous,

then surely the original automaton (which has less paths) is

also counter-unambiguous. On the other hand, if the over-

approximate automaton is counter-ambiguous, then we can-

not infer that the original automaton is counter-ambiguous.

Example 3.4. We show the static analysis for a counter-

unambiguous regex 𝑟 = Σ∗(𝜎1𝜎1{𝑛} + 𝜎2𝜎2{𝑛}), where 𝑛 is

a constant. For this regex, the over-approximate analysis is

more efficient than the exact analysis. To illustrate this, we

first construct the NCA:

𝑞1 𝑞2

𝑞3

𝑞4 : 𝑥

𝑞5 : 𝑥
Σ

𝜎̄1

𝜎̄2

𝜎1 / 𝑥 B 1

𝜎1, 𝑥 < 𝑛 / 𝑥++
𝜎2 / 𝑥 B 1

𝜎2, 𝑥 < 𝑛 / 𝑥++

𝑥 = 𝑛

𝑥 = 𝑛

The exact analysis constructs the token transition system:

𝑞1 𝑞2

𝑞3

(𝑞4, 1)

(𝑞5, 1)

...

...

(𝑞4, 𝑛)

(𝑞5, 𝑛)
Σ

𝜎̄1

𝜎̄2

𝜎1

𝜎2

𝜎1

𝜎2

𝜎1

𝜎2

To determine whether the regex is counter-unambiguous,

the exact analysis explores all possible token pairs in the

product transition system. In this example, the number of

explored pairs is Θ(𝑛2). Below is a part of the product tran-

sition system, in which all token pairs ⟨(𝑞5, 𝑖), (𝑞4, 𝑗)⟩ with
1 ≤ 𝑖 < 𝑗 ≤ 𝑛 (colored in gray) will be explored.

⟨𝑞1, 𝑞1 ⟩ ⟨𝑞1, 𝑞2 ⟩

⟨𝑞3, (𝑞4, 1) ⟩

⟨𝑞1, (𝑞4, 1) ⟩

⟨(𝑞5, 1), (𝑞4, 2) ⟩

⟨𝑞3, (𝑞4, 2) ⟩ ⟨(𝑞5, 1), (𝑞4, 3) ⟩

⟨(𝑞5, 2), (𝑞4, 3) ⟩

...

...

...

Σ

𝜎̄1

𝜎̄2 ∩ 𝜎1

𝜎1

𝜎2 ∩ 𝜎1

𝜎̄2 ∩ 𝜎1

𝜎2 ∩ 𝜎1

𝜎2 ∩ 𝜎1

We have observed that regexes of the form 𝑟 = Σ∗(𝜎1𝜎1{𝑛}+
𝜎2𝜎2{𝑛}), where 𝑛 is a large number, can be found in the

Snort and Suricata benchmarks. For these regexes, the ex-

act analysis may require a long computation. Fortunately,

the over-approximate analysis is substantially faster. We

approximate the regex as 𝑟 ′ = Σ∗(𝜎1𝜎1{𝑛} + 𝜎2𝜎
∗
2
) and

𝑟 ′′ = Σ∗(𝜎1𝜎
∗
1
+ 𝜎2𝜎2{𝑛}) and check the counter-ambiguity

of 𝑟 ′ and 𝑟 ′′ using the exact analysis. The regex 𝑟 is de-

termined to be counter-unambiguous if both 𝑟 ′ and 𝑟 ′′ are
counter-unambiguous. Below, we construct the token transi-

tion system 𝐺 for 𝑟 ′. Only Θ(𝑛) token pairs are explored in

the product transition system 𝐺2
.

𝑞1 𝑞2

𝑞3

(𝑞4, 1) ... (𝑞4, 𝑛)

Σ

𝜎̄1

𝜎̄2

𝜎2

𝜎1 𝜎1 𝜎1

The over-approximate analysis checks the counter-ambiguity

of 𝑟 ′, 𝑟 ′′. So, it reduces the complexity from Θ(𝑛2) to Θ(𝑛).

3.2.1 NCAExecutionwithBit Vectors. If the static anal-
ysis determines that an NCA state 𝑞 is counter-ambiguous,

then this implies that the execution of the automaton may

require several memory locations to store tokens of the form

(𝑞, 𝛽). Assuming that 𝑞 has only one counter register 𝑥 (i.e.,

𝑅(𝑞) = {𝑥}) and that 𝑞 is 𝑛-bounded, we know that there are

at most 𝑛 different possible tokens. In order to compactly

represent a set of tokens, the idea is to use a bit vector that

indicates the presence or the absence of a specific token on

𝑞. So, a bit vector 𝑣 encodes a set of tokens on 𝑞 as follows:

𝑣 [𝑖] = 1 iff the token (𝑞, 𝑖) is active. We can also think of

a bit vector as a representation for part of the automaton

configuration (recall the configuration semantics from §2).

It remains to see how the execution of the automaton

can be described using these bit vectors to represent the

configuration. Example 2.2 shows the NCA for the regex

Σ∗𝜎1 (𝜎2𝜎3){𝑚,𝑛}𝜎4. This NCA is general enough to illus-

trate the main ways in which we manipulate bit vectors:

(1) Consider a transition 𝑝 → 𝑞, annotated with “𝜎 / 𝑥 B
𝑐”, where 𝑝 is pure and 𝑅(𝑞) = {𝑥}. A token on 𝑝 is

transformed into a bit vector 𝑣 for 𝑞 that is everywhere

0 except that 𝑣 [𝑐] = 1.

(2) Let 𝑝 → 𝑞 be a transition, annotated with 𝜎 , where

𝑅(𝑝) = 𝑅(𝑞) = {𝑥}. Since the transition does not change

the counter valuations, a bit vector 𝑣 on 𝑝 is passed along

unchanged to 𝑞.

(3) We will deal now with a transition 𝑝 → 𝑞, annotated

with “𝜎, 𝑥 < 𝑛 /𝑥++”, where 𝑅(𝑝) = 𝑅(𝑞) = {𝑥}. Assume

further that both 𝑝 and 𝑞 are 𝑛-bounded, which means

that each state carries a bit vector of size𝑛. This transition

corresponds to performing a shift operation to the bit

vector 𝑣 of 𝑝 , resulting in a new bit vector 𝑣 ′ for 𝑞. We

have: 𝑣 ′[1] = 0 and 𝑣 ′[𝑖+1] = 𝑣 [𝑖] for ever 𝑖 = 2, . . . , 𝑛−1.

(4) Finally, let us consider a transition 𝑝 → 𝑞, annotated

with “𝜎,𝑚 ≤ 𝑥 ≤ 𝑛”, where 𝑅(𝑝) = {𝑥} and 𝑞 is pure. If 𝑣

is the current bit vector for 𝑝 , then taking this transition

produces a token for 𝑞 if and only if one of 𝑣 [𝑚], 𝑣 [𝑚 +
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Table 1. Analysis of regexes in the benchmarks.

Benchmark # total # supported # counting # c-ambiguous

Protomata 2338 2338 1675 1675

Snort 5839 5315 1934 282

Suricata 4480 3728 1510 246

SpamAssassin 3786 3690 459 279

ClamAV 100472 100472 4823 3626

1], . . . , 𝑣 [𝑛 − 1], 𝑣 [𝑛] is equal to 1. In other words, we

have to compute the disjunction 𝑣 [𝑚] ∨ · · · ∨ 𝑣 [𝑛].
The above cases involve the main operations that we use for

bit vectors: setting the least significant bit (case 1), shifting

left by one position (case 3), and computing the disjunction

of some of the most significant bits (case 4).

The way bit vectors are used (setting the lowest-order bit,

shifting, and reading high-order bits) is similar to how queues

and sliding windows are used for runtime verification with

metric temporal logic (MTL) [7, 15, 32, 33]. We note that MTL

involves constructs that specify time durations with intervals

of the form [𝑚,𝑛], which are akin to the bounded repetition

operators {𝑚,𝑛} of regexes. This explains the similarity in

the implementation.

3.3 Implementation and Experiments
We have implemented a Java program that statically analyzes

regexes to determine if they are counter-(un)ambiguous.

We will call this program the counter-ambiguity checker.
The implementation includes both the exact and the over-

approximate analyses. As the approximate analysis may be

unable to verify the counter-ambiguity of some instances,

our checker implements a hybrid analysis. First, it checks
the counter-(un)ambiguity of each instance of bounded repe-

tition in the regex using the over-approximate analysis. If it

finds a potentially counter-ambiguous instance, then it halts

the over-approximate analysis and uses the exact algorithm

to check the regex. Otherwise, it determines that the regex

is counter-unambiguous.

The checker not only determines if a regex is counter-

ambiguous but also provides a counter-ambiguity witness,
which is a string over the alphabet. If the NCA is executed on

the witness, then at least two tokens with different counter

valuations will end up on some state of the NCA. The checker

supports the analysis of counter-ambiguity for each instance

of bounded repetition inside a regex. For example, given

a regex 𝜎1{𝑚}Σ∗𝜎2{𝑛}, it can check the first instance (i.e.,

{𝑚}), which is counter-unambiguous, and the second in-

stance (i.e., {𝑛}), which is counter-ambiguous.

We evaluate the performance of our counter-ambiguity

checker using five benchmarks, which contain regexes col-

lected from real applications. These benchmarks are: (1) the

Snort [50] and (2) Suricata benchmarks [55] that contain

patterns for network traffic, (3) the Protomata benchmark

that includes 1309 protein motifs from the PROSITE data-

base [39, 42], (4) the ClamAV benchmark [16] that contains

patterns that indicate the presence of viruses, and (5) the

SpamAssassin benchmark [3] that includes patterns for

detecting spam email.

Table 1 shows some statistics for the regexes included

in the benchmarks. In the Snort, Suricata, and SpamAssas-

sin benchmarks, some of the collected regexes may con-

tain backreferences [38], which is not a regular operator

(i.e., it can give rise to non-regular languages). We filter out

regexes with backreferences from the datasets and perform

the static analysis on the remaining regexes (which contain

the supported regular operators). Table 1 provides the fol-

lowing information: the total number of regexes for each

benchmark, the number of regexes with supported (regular)

operators, the number of regexes with at least one occur-

rence of constrained repetition (counting), and the number

of counter-ambiguous regexes.

Experimental setup. The experiments were executed in

Ubuntu 20.04 on a desktop computer equipped with an Intel

Xeon(R) E3-1241 v3 CPU (4 cores) with 16 GB of memory

(DDR3 at 1600 MHz). We used OpenJDK 17 and set the max-

imum heap size to 4 GB. For each regex, we executed 20

trials and selected the mean runtime as the value used the

reported results (excluding the first 10 “warm-up” trials).

Performance: Running Time. We evaluate the perfor-

mance of the static analysis over regexes that have non-

nested instances of constrained repetition. We report the

running time of the static analysis and we consider its de-

pendence on the following “measure of complexity” for a

regex 𝑟 : the maximum repetition upper bound over all oc-

currences of {𝑚,𝑛} in a regex, which we denote by 𝜇 (𝑟 ). For
example, the regex 𝑟 = 𝜎1{1, 5}𝜎2𝜎3{4} has two occurrences

of constrained repetition, and the maximum repetition up-

per bound is 𝜇 (𝑟 ) = max(5, 4) = 5. In general, we expect the

running time for the analysis of a regex 𝑟 to depend on 𝜇 (𝑟 ),
since checking counter-ambiguity involves the generation

of token pairs whose number increases as 𝜇 (𝑟 ) increases.
Figure 2(a) shows the running time of the static analysis

indexed by the measure 𝜇. The results are shown in 20 plots,

which are organized in a 5× 4 grid. There are 5 rows, one for

each benchmark: Snort, Suricata, Protomata, SpamAssassin,

ClamAV. There are 4 columns, one for each variant of the

static analyzer: exact, approximate, hybrid, and hybrid with

witness reporting. Each of these 20 plots contains multiple

points, one for each regex of the benchmark. For every regex

𝑟 , the corresponding point has horizontal coordinate equal to

𝜇 (𝑟 ) and vertical coordinate equal to the running time of the

analysis (in milliseconds). We observe that the running time

for analyzing a regex 𝑟 generally increases as 𝜇 (𝑟 ) increases.
In the Snort and Suricata benchmarks, the checker takes

more than 100 seconds to perform the exact analysis for
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(a) running time (b) # of created token pairs

Figure 2. The (a) running time and the (b) # of created token pairs of static analysis for regexes with different maximum upper

bounds of repetitions. E means exact analysis, A means approximate analysis, H means hybrid analysis, HW means hybrid

analysis with reporting inputs that witness the ambiguity. E.g., “Snort E” means the exact analysis in Snort benchmark.

Figure 3. Running time (ms) comparison of exact and hybrid

analyses on the Snort and Suricata benchmarks.

several counter-unambiguous regexes. See the top-right out-

liers in the plots labeled “Snort E” and “Suricata E” in Fig-

ure 2(a). This information is seen more promimently in Fig-

ure 3, where the exact and hybrid analyses are compared on

the Snort and Suricata benchmarks. The points with hori-

zontal coordinate >10
5
(msec) are noteworthy. They are sub-

stantially below the diagonal, which means that the hybrid

analysis offers significant improvement in terms of running

time. Some of these regexes are of the form Σ∗(𝜎1𝜎1{𝑚} +
𝜎2𝜎2{𝑛} + · · · ), where𝑚,𝑛, . . . are large numbers. When per-

forming exact analysis on these regexes, the checker needs to

explore a large number of token pairs, which makes the anal-

ysis time-consuming. However, as discussed in Example 3.4,

the over-approximate analysis can greatly reduce the cost

of the computation. We observe that the over-approximate

analysis reduces the running time of expensive regexes by

over 100 times in both the Snort and Suricata benchmarks.

Moreover, as these regexes are counter-unambiguous, the

result of their over-approximate analysis is accurate. This

explains why the hybrid analysis also reduces the running

time of these challenging regexes.

The fourth column in Figure 2(a) shows the performance

(in terms of running time) of a variant of the static analyzer

that reports a witness (input string) when a regex is counter-

ambiguous. We observe that finding and reporting a counter-

ambiguity witness add a very small overhead to the static

analysis. This is because recording the witness amounts to

simply storing a transition symbol whenever the analysis

moves from one token pair to another.

Performance: Memory Footprint. The checker analyzes
the counter-ambiguity of a regex by exploring token pairs

in a product transition system. These token pairs are cre-

ated on the fly, as the transition system is being explored.

We estimate the memory footprint of the static analysis by

measuring the number of token pairs that the checker cre-

ates. Figure 2(b) shows the results for five benchmarks and
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four different variants of the static analysis. Similarly to the

case of running time, the over-approximate analysis greatly

reduces the worst-case cost of analyzing several counter-

unambiguous regexes in the Snort and Suricata benchmarks.

4 Hardware Implementation and
Experiments

In this section, we present our hardware design for effi-

ciently executing NCAs. We augment a state-of-the-art in-

memory NFA acceleration architecture called CAMA [26]

with counter and bit vector modules. We report hardware

simulation results in both microbenchmarks and application

benchmarks.

4.1 Hardware Design
Existing in-memory automata accelerators adopt a two-phase

architecture: a state matching phase that finds the current

active states, and a state transition phase that calculates the

available states in the next cycle. AP-style accelerators, such

as AP [19], CA [54], and eAP
4
[47], perform state matching

by reading from read-access memories (RAMs) that store bit

vector representations of states in memory columns. Each

column in the RAM represents one state, which is called a

State Transition Element (STE). Using 8-bit symbols as an

example, each RAM entry is 256-bit and the 𝑖-th position

has value 1 iff the symbol 𝑖 is associated with the state
5
. Ad-

ditionally, the connections between states are programmed

into a switch network where existing state transitions are

realized as physical connections.

Each processing cycle begins in the state matching phase,

where an input symbol is encoded as a one-hot representa-

tion
6
and used as the address to read from the state matching

memory. The columns that read out ‘1’s indicate successful

matches between the input symbol and the STEs. With a

logical AND operation between the available states reported

from the last cycle and the matched states reported by the

memory in the current cycle, matching results of the active

states in the current cycle are determined. Next, in the state

transition phase, the current active states pass through the

programmed switch network to create the next vector which

stores available states for the next cycle.

However, AP-style accelerators severely under-utilize the

state matching memories in realistic NFAs across common

benchmarks, because this approach is optimal only for the

worst case of purely random NFAs. Impala [46] and CAMA

4
eAP stands for embedded Automata Processor.

5
Recall from §2 that we consider homogeneous automata, which means

that all transitions leading to a state 𝑞 are labeled with the same predicate

𝜎 over the alphabet. The RAM entry is a representation of the predicate 𝜎 .
6
The one-hot representation of an 8-bit symbol 𝑖 consists of 2

8 = 256 bits,

where the 𝑖-th bit has value 1 and the others are 0.

[26] made critical improvements by proposing special en-

coding schemes to reduce the state matching memory re-

quirements. CAMA further employs specialized content-

addressable memories (CAM) to perform state matching

with lower energy and memory footprints than all other

designs using RAM. As a result, the memory requirement for

256 STEs is reduced from one 256×256 6-transistor SRAM
in AP and CA, to two 16×256 6-transistor SRAMs in Impala

and approximately one 16×256 8-transistor CAM in CAMA.

Moreover, CAMA optimizes a reduced-crossbar switch net-

work that was first proposed by eAP, which largely reduces

the area and energy costs of state transitions. Compared with

prior NFA in-memory architectures, CAMA achieves leading

throughput, energy, and area efficiency. CAMA’s throughput

is 2.14GBps, 1.18x better than CA, 9.5x better than FPGA-

based Grapefruit [40], and 2-4 orders better than CPU/GPU

solutions. CAMA’s energy efficiency is 4.91nJ/Byte, over 10x

better than most efficient alternatives, i.e. Grapefruit (FPGA)

and AP. This paper uses the latest memory- and energy-

efficient CAMA architecture as the baseline and augments it

with our proposed counter and bit vector modules.

Figure 4(a) shows the Glushkov NCA for the counter-

unambiguous regex 𝑎(𝑏𝑐){1, 3}𝑐 . The Glushkov construction
ensures that the NCA is homogeneous (all transitions en-

tering a state are labeled with the same predicate over the

alphabet). This property allows us to convert the NCA to

a hardware-friendly representation by omitting the initial

state and pushing the predicates from the edges to the states,

thus transforming NCA states into STEs. For example, we

push the predicate 𝑎 into state 𝑞𝑎 so that in Figure 4(b) we

have a state labeled with the predicate 𝑎, which becomes an

STE that is activated to fire signals only when the input satis-

fies the predicate 𝑎. The original CAMA design, as shown in

Figure 4(c), only supports NCAs by fully unfolding bounded

repetitions. In our augmented CAMA, two types of hardware

modules, counters and bit vectors, are added to accelerate

the execution of NCAs. As shown in Figure 4(d), both mod-

ules take input from STEs related to counting and produce

output signals to the switch network. Counters are inserted

to support counter-unambiguous repetitions, while bit vec-

tors are reserved for counter-ambiguous repetitions (recall

§3.2.1). Compared to CAMA, the additional counters and bit

vectors retain all necessary processing information while

avoiding the cost of unfolding (which results in additional

STEs). In Section 4.2, we will further explain the design and

the input/output ports of the counter and bit vector modules.

Figure 5 shows the structure of an augmented CAMA

bank. The overall architecture of CAMA is preserved, and

the functionalities of existing components remain the same.

Each bank consists of an input/output buffer and 16 process-

ing arrays. Each array has a global switch and 8 processing

elements (PEs). Each PE contains two 256-STE CAM arrays,

two local switches, and 8 counters, and it may contain a bit

vector depending on the configuration from users. Note that
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𝑞0 𝑞𝑎 𝑞𝑏 : 𝑥 𝑞𝑐 : 𝑥 𝑞𝑑
𝑎 𝑏 / 𝑥 B 1

𝑐

𝑏, 𝑥 < 3 / 𝑥++

𝑑, 1 ≤ 𝑥 ≤ 3

(a)

Figure 4. (a) Glushkov NCA for regex 𝑎(𝑏𝑐){1, 3}𝑑 . (b) Cor-
responding NCA with STEs. (c) Original hardware using

unfolding. (d) Augmented hardware with counter or bit vec-

tor.

the input ports to the counter and bit vector modules are

connected to fixed groups of STEs. For example, as shown

on the right, port pre is connected to STEs 0 to 7, port fst
is connected to STEs 8 to 16, and so on. When enabled, an

STE within the group can pass signals to the connected port.

We use an efficient mapping algorithm to build the connec-

tion between ports and STE groups so that we maintain the

generality of the design but reduce the complexity of routing.

It is worth mentioning that our proposed counters and

bit vectors are not only suitable for the CAMA architec-

ture. Other in-memory automata architectures, like CA, can

also be augmented for NCAs with minor hardware design

changes. Specifically, these changes are: (1) counters and bit

vectors need to be allowed to connect to elements that repre-

sent states, and (2) the routing network needs to be extended

to store the transitions from counters and bit vectors.

Software-HardwareCodesign. The initial motivation for

our hardware design came from the observation that sev-

eral instances of bounded repetition require significantly

less memory than what is suggested by a naive unfolding.

This led to the formalization of counter-(un)ambiguity in

NCAs and the corresponding static analysis. For the counter-

unambiguous case, it suffices to use simple counter modules

that keep track of the number of repetitions. For the counter-

ambiguous case, the use of bit vectors is a very natural choice

for a hardware representation of sets of tokens. These consid-

erations led to the design of the counter and bit vector mod-

ules. Physical constraints imposed by the hardware call for

minimizing the connections between STEs and the counting

Figure 5. Abstraction of proposed augmented CAMA bank,

where PE is abbreviation for Processing Element.

modules. For this reason, we have chosen to use bit vectors

for counter-ambiguous repetitions of the form 𝜎{𝑚,𝑛} and
use (partial) unfolding for other cases. The vast majority of

counter-ambiguous repetitions in real-world benchmarks

are of this form, so this approach offers efficiency (due to

an optimized hardware implementation) without sacrificing

generality (since the remaining cases can be handled at the

level of the software/compiler).

4.2 Compilation from Regex to MNRL
To program the hardware, we provide a description of the

automata in the MNRL language [2]. Our compiler takes a

source regex and produces the MNRL file with the following

steps: (1) First, the compiler parses the regex and simpli-

fies it with certain rewrite rules, including the unfolding

of repetitions with upper bound < 2 and the merging of

character classes inside simple alternations (e.g., [a]|[b]
is rewritten to [ab]). (2) Then, the compiler performs the

static analysis of §3 and annotates the regex with the counter-

(un)ambiguity result for each occurrence of repetition. (3)

Finally, the compiler generates the MNRL file using these

annotations, distinguishing cases where a counter suffices

(counter-unambiguous) from cases where a bit vector is nec-

essary (counter-ambiguous).

MNRL provides an element called upCounter for repre-

senting simple counters [2, 19]. However, there is no distinc-

tion between counter-ambiguous and counter-unambiguous

repetition. We have therefore extended the MNRL format by

adding syntax for counters and bit vectors.

Figure 6 presents an abstraction of the counter module
(enclosed by a dashed line) by showing how it is used to

implement the counter-unambiguous regex 𝑎(𝑏𝑐){𝑚,𝑛}𝑑 in

hardware. A counter has three incoming ports pre, fst, and
lst, and two outgoing ports en_fst and en_out, where
ports are labeled with red dots in Figure 6. The input port

pre (i.e., pre-counting) is connected to the STE (labeled with

𝑎) located right before the repetition, fst (i.e., first) is con-
nected to the first STE (labeled with 𝑏) in the repetition, and
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Figure 6.Use of counter module to implement 𝑎(𝑏𝑐){𝑚,𝑛}𝑑 .

Figure 7. Use of bit vector to implement [𝑎𝑏]∗𝑎[𝑎𝑏]{𝑚,𝑛}𝑏.

lst (i.e., last) is linked to the last STE (labeled with 𝑐) in the

repetition. The output port en_out (i.e., enable output STE)

activates the STE (labeled with 𝑑) located right after the rep-

etition, and en_fst (i.e., enable first STE) activates the first
STE (labeled with 𝑏) in the repetition. The counter module

consists of a synchronous counting unit using D flip-flop

and two digital comparators. The module is designed to meet

four constraints: (1) The counter value is reset to 0 when pre
was active in the previous cycle and fst is currently active.

This corresponds to the initialization of the repetition. (2)

The counter value is incremented by 1 when fst is active but
pre was not active in the previous cycle. This corresponds

to one complete cycle. (3) en_out fires if lst is active and

the counter value is within the expected range (i.e., [𝑚,𝑛]).
(4) en_fst fires if lst is active and the counter value is ≤ 𝑛.

Figure 7 presents an abstraction of the bit vector mod-
ule by showing how the regex [𝑎𝑏]∗𝑎[𝑎𝑏]{𝑚,𝑛}𝑏 is imple-

mented in hardware. The core component of the bit vector is

a serial-in-parallel-out shift register. It supports four primary

operations: (1) reset, which resets all bits in the vector to 0,

(2) setFirst, which sets the first bit of the vector to 1, (3)

shift, which shifts the vector by one bit, and (4) disjunct,
which computes the disjunction of a sub-array of bits from

index 𝑚 to 𝑛 (if one of the bits in the sub-array is 1, the

output signal fires).

Table 2. Hardware component parameters

Component Energy (fJ) Delay (ps) Area (𝜇𝑚2
)

CAMA Bank 16780 325 3919

17-bit counter 288 101 237

2000-bit vector 3340 71 6382
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Figure 8. Energy (upper two figures) and area (bottom two)

trade-off of unfolding vs using counter (left two figures) and

bit vector (right two), where axis is log-scaled.

4.3 Hardware Evaluation
We modified the open-source simulator VASim [61] to simu-

late the hardware performance of our augmented CAMA.We

include 17-bit counters for supporting unambiguous count-

ing, and 2000-bit vectors for supporting ambiguous count-

ing, where the bit vector can be broken down to segments

and used separately for counting with small upper bounds.

We use a TSMC 28nm CMOS technology and the industry-

standard SPICE circuit simulator [52] to obtain the energy, de-

lay, and area parameters of each component (Table 2). Since

state transition is the critical path in CAMA, state matching

and counter/bit-vector operations can be performed within

a single clock cycle in the augmented CAMA, maintaining

the same clock frequency of 2.14 GHz and throughput as

CAMA-T (CAMA version optimized for high throughput)

without performance penalties.

Micro-benchmarks. Figure 8 shows the trade-off of un-

folding vs. using counter and bit vector modules. In the left

two sub-figures, we consider regexes 𝑎{𝑛} with different

values of 𝑛. These regexes are counter-unambiguous – the

hardware implementation only needs a single counter mod-

ule to perform the matching, while unfolding creates 𝑛 STEs.

The upper-left (resp., bottom-left) sub-figure shows the en-

ergy (resp., area) cost of using a counter module compared

with unfolding, where we always use a 17-bit counter mod-

ule to represent counter values regardless of their different
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Figure 9. Total number of MNRL nodes with different un-

folding thresholds (both axes are log-scaled).

repetition bounds. In the right two sub-figures, we consider

regexes Σ∗𝑎{𝑛}. These regexes are counter-ambiguous, so

the hardware needs to use a bit vector to perform matching,

while unfolding creates𝑛 STEs. In this comparison, we set the

length of the bit vector to be equal to 𝑛 for each data point

(this implies that bits are wasted). The upper-right (resp.,

bottom-right) sub-figure shows the energy (resp., area) cost

of using a bit vector compared with unfolding. From the re-

sults shown in Figure 8, we observe that using a counter/bit

vector provides better performance compared to unfolding

even for repetitions with small upper bounds. It consistently

reduces energy usage by orders of magnitude and areas by

large margins.

Application benchmarks. We use the same benchmarks

as described in Section 3.3 (except for ClamAV). Figure 9

shows the number of MNRL nodes (which is linear in the

number of STEs) for different unfolding thresholds. For each

benchmark and each point in the corresponding curve, the

x coordinate is an unfolding threshold 𝑘 and the y coordi-

nate is the number of MNRL nodes that are obtained from

compiling the entire benchmark after bounded repetitions

up to 𝑘 have been unfolded. The rightmost point on each

benchmark curve shows the unfolding threshold that results

in full unfolding for all regexes of the benchmark and the

resulting number of MNRL nodes.

We have simulated the area and the energy consumption

of our augmented CAMA by feeding compiled MNRL files

with different unfolding thresholds to the modified VASim.

Figure 10 shows the per-input-byte energy consumption and

the total area cost of the augmented CAMA. The results

show up to 76% energy reduction and 58% area reduction in

benchmarks with an abundance of instances of bounded rep-

etition with large upper bounds (i.e., Snort and Suricata). In

benchmarks that generally include bounded repetitions with

small upper bounds (i.e., Protomata and SpamAssassin), the

augmented CAMA hardware still outperforms pure CAMA

with little to no overhead. We observe that for the Protomata

and SpamAssassin benchmarks, our hardware implementa-

tion provides less energy and area reduction compared with

Snort and Suricata. This is because, in general, the regexes

in Protomata and SpamAssassin have small repetition upper

bounds. The wasted area in Figure 10 corresponds to unused

bits in the bit vector modules.

5 Related Work
There is a rich set of prior works that define (un)ambiguity
on regular expressions. Book et al. [10] have defined unam-

biguous regexes usingGlushkov automata [21]. Bruggemann-

Klein and Wood have expressed the related notions of deter-
ministic [12] and 1-unambiguous [13] regexes. Hovland [24]

has defined the class of counter-1-unambiguous for regexes
with counting. Hovland et al. [25] have further considered a

strongly 1-unambiguous class where the membership prob-

lem, for regexes with counting and unordered concatena-

tions, can be solved in polynomial time. Gelade et al. [20]

have defined strong and weak determinism and shown that

weakly deterministic regexes are exponentially more suc-

cinct than the strongly deterministic ones. A survey of un-

ambiguity in automata theory can be found at [17].

Several different automata models and automata-based

techniques have been proposed to handle the matching of
regexes with counting. DFAs and NFAs have been extended
by [23] and [8] respectively by introducing counting oper-

ations and guards as an alternative to unfolding for large

repetition bounds. An implementation of a class of counter

automata, proposed in [59], is based on queues for repre-

senting sets of counter values. A variety of software regex

matchers, including RE2 [18, 41], Rust’s Regex [44], PCRE

[37], SRM [45], and Hyperscan [65] support the matching of

regexes with counting. Thesematchers are typically based on

the execution of DFAs or NFAs. Matchers like RE2 and SRM

unfold constrained repetitions when performing on-the-fly

determinization or computing derivatives.

A series of ASIC hardware architectures [11, 58] have
been designed to reach high throughput for network applica-

tions relying on pattern matching algorithms. The IBM regX

[31] accelerator extends the idea of representing regexes

with compressed DFAs [8, 36, 68], which are hybrids between

DFAs and NFAs, and its parallelized architecture improves

performance on large workloads. Dlugosch et al. [19] de-

signed the Automata Processor (AP), a reconfigurable ASIC

hardware based on bit-parallellism [4] that simulates NFAs

in parallel. Liu et al. [28] developed SparseAP to provide

support for AP to efficiently execute large-scale applications.

AP can support many regexes found in real-life applications

[61, 62]. However, it provides restricted support for regexes

with counting (when upper bounds are larger than 512 they

are considered unbounded [43]). Other major ASIC works

are based on the Aho-Corasick algorithm [1] including [58],

HAWK [56], and HARE [22]. They compute partial matches

for all possible alignments and merge them to find a global

match. HARE achieves a 32Gbps throughput but has lim-

ited support for Kleene operators (which only allow single
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Figure 10. Per-input-byte energy consumption (left) and total area cost (right) of the augmented CAMA hardware

character class repetition), and it provides no support for

unbounded counting.

Many prior works [5, 48] focus on FPGA and GPU hard-
ware architectures to take advantage of their configurabil-

ity and parallelism. [67] and [51] provide support for regexes

with counting on FPGA hardware. [63] extends the DFA am-

biguity expressed in [49] to NFA with counters by defining

the character class ambiguity, a problem that arises when

the intersection between two adjacent character class with

constraint repetitions (CCR) is non-empty. A min-max algo-

rithm with two counters for every CCR keeps track of all

possible matches. Our notion of counter-ambiguity is formu-

lated more generally, and our simulation based on bit vectors

handles character class ambiguity. Finally, there are several

works that implement regex matching algorithms on GPUs

[14, 29, 60, 70].

6 Conclusion
We have investigated hardware acceleration for regular pat-

tern matching, where the patterns are specified by regexes

with an extended syntax that involves bounded repetitions of

the form 𝑟 {𝑚,𝑛}. We have developed a design that integrates

counter and bit vector modules into an in-memory NFA-

based hardware architecture. This design is inspired from

the theoretical model of nondeterministic counter automata

(NCAs) and the observation that some instances of bounded

repetitions require only a small amount of memory. We for-

malize this idea using the notion of counter-unambiguity.

We have implemented a regex-to-hardware compiler that

performs a static analysis for counter-(un)ambiguity over

a regex and then creates a representation of an automaton

with counters and bit vectors that can be deployed on the

hardware. Our experiments show that using counters and bit

vectors outperforms unfolding solutions by orders of magni-

tude. Moreover, in experiments with realistic workloads, we

have observed that our design can provide up to 76% energy

reduction and 58% area reduction in comparison to CAMA

[26], a state-of-the-art in-memory NFA processor.
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